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Abstract 
This work provides a concept for modelling well performance 
behavior in a gas condensate reservoir using an empirical 
model for the gas mobility function.  This model is given by: 
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This concept model represents the minimum gas permeability 
(or mobility) near the wellbore and the maximum (or original) 
gas permeability (or mobility) in the "dry gas" portion of the 
reservoir, as well as the transition regime.  This model was 
constructed based on observations derived from numerical 
simulation results where the saturation, effective permeability, 
and gas mobility are presented as functions of distance in  
the reservoir. 
 

The utility of this concept is that it can be used to develop a 
pressure solution for the behavior of the gas phase produced 
from a gas condensate reservoir.  This new solution is vali-
dated against numerical simulation and has been presented 
graphically for use in well test analysis (in the form of "type 
curves").  The advantage of this solution over the conventional 
radial composite reservoir solutions is that the evolution of the 
condensate zone can be represented and evaluated as it occurs 
in time.  The obvious limitation is the simplified form of the kg 
profile as a function of radius and time, as well as the depen-
dence/appropriateness of the "α" coefficient. 
 

Application of this new pressure solution to well test analysis 
is proposed — and comparisons to the radial composite (and 
other reservoir models) are also presented.  Our goal is to de-
monstrate that the proposed solution has potential utility in the 
analysis and interpretation of reservoir performance data (most 
likely, pressure drawdown and pressure buildup test data). 
 

We recognize that the simplicity of this approach may have 
practical limitations — for example, we consider a radially-

varying mobility profile, but we also assume a constant dif-
fusivity — this is a potential shortcoming that should be con-
sidered in future work. 
 

Objectives 
The primary objective of this work is: 
 

z To develop an analytical representation of the pressure 
behavior in time and space for a reservoir system with a 
varying mobility profile (see Fig. 1 for the mobility 
profile observed from numerical simulation for a radial 
gas condensate reservoir system). 

 

The secondary objectives of this work are: 
 

z To utilize this new model as a mechanism to develop 
graphical solutions for the pressure derivative in time 
and radial distance so that the new solution can be 
compared to other solutions (e.g., the 2-zone radial 
composite reservoir model and various cases of the 
sealing fault model (time derivative) — as well as the 
pressure and pressure derivative (radial derivative) as a 
function of radial distance derived from  
numerical simulation). 

 

z To use this new model to develop solutions which 
include wellbore storage and skin effects for modeling 
the pressure drop and pressure drop derivative func-
tions in time. 

 

z To propose applications in the analysis of well test 
data acquired from pressure drawdown or pressure 
buildup tests. 

 

Statement of Problem 
This work is focused on the concept of using a functional form 
to represent a prescribed mobility profile (i.e., k/µ) and to 
incorporate this empirically-derived model into the rigorous 
diffusivity equation for the liquid case.  The goal is to use this 
concept and the resulting flow model to represent the gas 
condensate case.  We are treating this case as a "liquid 
equivalent" problem where non-idealities (e.g., pressure-
dependent PVT functions) are addressed using the conven-
tional pseudofunctions (i.e., pseudopressure and pseudotime). 
 

We have used the simulation cases presented by Roussennac1 
as a starting point for establishing a model for gas mobility as 
a function of radius and time for a gas condensate reservoir.  
We recognize that simulated profiles are problematic (i.e., a 
different set of input data may yield a different profile), but we 
believe that the cases presented by Roussenac offer an appro-
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priate starting point as these cases are well calibrated  
and veri-fied. 
 

Using the results presented by Roussenac (see Fig. 1); we 
have established the following conceptual model for repre-
senting the permeability as a function of radius and pressure: 
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The appropriate form of the diffusivity equation for this work 
is given as: 
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Recall that we have presumed a "liquid equivalent" case (i.e., 
there are no pressure dependent properties).  As such, Eq. 1 is 
used as the permeability model and is coupled with the radial 
flow diffusivity equation for this case (Eq. 2) then solved for 
the case of a well produced at a constant rate in an infinite-
acting reservoir.  The relevant forms of this solution are 
derived in Appendix A and presented below. 
 

"Pressure Solution" 
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"Pressure Derivative in Time" 
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"Pressure Derivative in Radial Distance" 
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The most important issue to consider in evaluating Eqs. 3-5 is 
that no limiting assumptions are made (other than the tradi-
tional solution approach using the Boltzmann transform) and 
each formulation is presumed to be unique.  We will note that 
Eq. 3 cannot be expressed analytically and must be evaluated 
numerically.  In our case we have utilized the software 
Mathematica,2 which is computationally flexible, as well as 
capable of generating "near exact" results.  Eqs. 4 and 5 are 
closed form results that are essentially identical in form, we 
note that comparison of Eqs. 4 and 5 yield the  
following iden-tity: 
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Where (as noted in Appendix A), Eq. 6 is uniquely valid for 
this case as well as the homogeneous reservoir solution. 
 

For plotting the pressure derivative functions in both time and 
space we have defined the following definitions: (which are 
derived by inspection of Eqs. 4 and 5) 
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Presentation of Results — Pressure Solution for the 
Case of a Permeability Profile that Varies with Time 
and Radial Distance 
The new solution is presented in the following formats: 
 

z pDdt versus αDtD/rD
2: (Fig. 2) This format provides 

perspective on "early" and "late" behavior, where for a 
particular value of αD we can observe the evolution of 
the permeability profile in the pressure derivative 
response.  The generalized x-axis plotting function 
permits us to view all possible scenarios of the αD -
parameter on the same plot. 

 

z pD(εD) versus rD
2/(αDtD): (Fig. 3a) This format illu-

strates the radial distribution of dimensionless pressure 
(analogous to pressure drop).  We immediately note 
that the highest values of pressure drop (or dimension-
less pressure, pD) occur near the well (i.e., at small rD 
values)).  For comparison, we note that, near the well, 
the lowest values of pD occur for the homogeneous 
reservoir case (i.e., kmin/kmax=0) —  this confirms our 
concept that the evolving permeability profile acts to 
reduce flow near the well. 

 

z pDdr versus rD
2/(αDtD): (Fig. 3b) We note that, in the 

formats used in these plots, Figs. 2 and 3b are 
essentially "mirror images" —  which is the behavior we 
expect when we consider the identity given by Eq. 9.  
Fig. 3b (as Fig. 3a) has little practical application (we 
do not measure pressures in the reservoir) —  however, 
we will use both Figs. 3a and 3b to evaluate/validate a 
numerical simulation where pressure is provided as a 
function of radius. 

 

Validation 
 

Pressure Behavior in Radial Distance 
 

A cursory validation of the new solution is achieved by 
comparison of the solution (specifically, the pD and pDdr for-
mulations) with results obtained from the literature (Roussen-
nac (ref. 1)).  In Fig. 4a we present the pD —  ∆p (i.e., ∆p=pi-pr) 
match for this case and the pDdr —  |r(dp/dr)| match is shown in 
Fig. 4b.  With the exception of the behavior near the well (i.e., 
for small r-values), we note an excellent match of the data 
with the proposed solution. 
 

The behavior at small values of r is dominated by the "skin 
zone" —  actually a region of specified permeability used to 
provide the effect of near-well damage.  We do not consider 
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the existence of a "near-well damage" zone, we simply model 
a propagating permeability profile as shown in Fig. 1.  In Fig. 
5 we present the ∆p and |r(dp/dr)| data along with the ∆p and 
|r(dp/dr)| functions computed using our new reservoir model.  
Using Fig. 5 we have attempted to identify/classify the flow 
regimes which were observed during this simulation.  We note 
that this comparison of data and our proposed solution pro-
vides a strong validation of the proposed solution. 
 

Pressure Behavior in Time 
 

Our goal is to provide a qualitative comparison of the new 
proposed solution (time format result) and the 2-zone radial 
composite reservoir model —  where we note that the radial 
composite model is the most commonly used reservoir model 
for the interpretation and analysis of well test data from gas 
condensate reservoirs. 
 

We also present a comparison of the proposed model with the 
model for a well in the vicinity of one or more "sealing faults" 
—  where our goal is to simply compare the influence of our 
new model as a "flow constricttion" or "flow barrier."  We are 
not advocating the use of the "sealing faults" models for the 
analysis and interpretation of well performance data in gas 
condensate reservoir systems; we are simply making a 
qualitative (graphical) comparison of the solutions. 
 

In Fig. 6 we present the solution for a well in the vicinity of 
one or more sealing faults —  this presentation clearly indi-
cates that the orientation and number of faults dramatically 
affects the behavior of the pDdt function.  In Fig. 7 we present 
the "unified" plot (pDdt function) for multiple cases of the 
radial composite reservoir solution.  The most important, and 
most relevant issue is that the radial composite solution has 
fixed mobility and diffusivity ratios (for the inner and outer 
zones) —  by contrast to our solution which uses a perme-
ability profile in radius and time, but only a single value of 
diffusivity for the entire reservoir.  As such, we will only 
compare cases for the radial composite reservoir model where 
the diffusivity ratio is unity. 
 

In Fig. 8 we present a combined plot of all three reservoir 
cases: the sealing faults case, the 2-zone radial composite 
reservoir case, and our proposed reservoir model for a perme-
ability profile which varies in time and radial distance.  We 
note surprising similarity in the results shown in Fig. 8 —  
despite the fact that the reservoir models shown have little in 
common.  One interpretation could be that this behavior is a 
cause for concern since the models are distinctly different, yet 
produce similar behavior.  Another interpretation could be that 
the 2-zone (fixed) radial composite reservoir model and the 
new propagating permeability profile model have, at least in 
concept, a common denominator of 2 dominant permeabilities 
(i.e., the "near well" and "reservoir" permeabilities). 
 

In fact, as we note from Fig. 8, the radial composite and pro-
pagating permeability solutions converge at "late times," —  
i.e., when the reservoir permeability dominates the pressure 
response.  This is an important validation as the models do 
agree uniquely at late times.  We conclude that this compari-
son suggests utility of our new model for the analysis of well 
test data in gas condensate reservoirs —  with the caveat that 
we noted earlier regarding the fact that our proposed model 

uses a single value of diffusivity, and the 2-zone composite 
reservoir model uses 2 distinct diffusivities (i.e., the "near 
well" and the "reservoir" diffusivities). 
 

The issue of the "sealing faults" model is somewhat more 
complex —  we will simply suggest that a "flow barrier" (i.e., a 
sealing fault) and a flow contrast (i.e., the 2-zone radial 
composite reservoir model and the propagating permeability 
model) have similar (though not identical) behavior because 
the flow barrier/contrast affects the pressure behavior in a 
similar fashion.  This conclusion is somewhat inductive, but 
we believe it is both plausible and relevant. 
 

Addition of Wellbore Storage Effects 
In our work so far we have only considered the case of an 
ideal well in an infinite-acting reservoir with a propagating 
permeability profile —  where the well is produced at a con-
stant rate.  In this section we provide a mechanism for adding 
wellbore storage effects to our new solution for a propagating 
permeability profile.  Wellbore storage is typically "added" to 
the base pressure solution using convolution (or superposi-
tion) —  where convolution should be valid for this problem 
because we have assumed that are no non-linearities in the 
governing differential equation (Eq. 2).  As such, the convol-
ution for wellbore storage is written as: 
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Where the qD function (dimensionless sandface rate profile) is 
given as follows for the wellbore storage model: 
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spp DsD += ...................................................................  (11) 

Eqs. 9 and 10 can be combined to yield a "recursion relation" 
for the wellbore storage dimensionless pressure, pwD, but this 
approach is tedious and prone to error propagation.  Typical 
implementations of Eqs. 9 and 10 involve the use of the 
Laplace transformation —  unfortunately, our proposed solu-
tion (Eq. 3) is not suited to the use of the Laplace transform, 
and, as such, we must resort to another approach. 
 

For convenience we employ the method by Blasingame, et al.3 
for generating pressure solutions which include wellbore 
storage and skin effects —  the solution used in this work is 
given in Appendix B. 
 

We provide Figs. 9a and 9b as validations for the Blasin-
game, et al. method —  specifically for the case of an infinite-
acting homogeneous reservoir.  The pwDt function is computed 
using the procedures given in Appendix B and the pwDdt 
function is computed using the procedures given in Appendix 
C (where we note that we have used a polynomial regression 
(a 3-point formula) to calculate the pwDdt function.  We note 
excellent agreement between the "exact" solutions (i.e., the 
numerical inversion solution) and the approximate solutions 
provided by the methods given in ref. 3.  By extension, we 
will apply the procedures given in Appendices B and C to our 
new solution for a radially propagating permeability function. 
 

In Figs. 10a-10f we provide a sequence of solutions for the 
specific case of CD=1x103 and kmin/kmax varying for each case 
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from 1x100 to 1x10-3.  Individual plots consider a single value 
of αD, and the following cases of αD=1x100, 10-1, 10-2, 10-3, 10-

4, 10-5 are considered (Figs. 10a-10f, respectively).  In Figs. 
10a-10f we note the "evolving" effects of the αD-parameter, 
and we comment that non-unique effects are possible (i.e., a 
particular case or trend which appears similar to another case, 
although these cases have substantially different base proper-
ties (e.g., kmin/kmax, αD, etc.)).  Most of the cases in Figs. 10a-
10f should be described as unique (although Figs. 10b and 
10c do appear to be very similar). 
 

Our objective in this section is two-fold – first we wanted to 
present the development of wellbore storage solutions using 
our new radially propagating permeability result.  Second, we 
want to establish the general character/behavior of such re-
sults.  In Fig. 11 we present a "composite" plot of all pwDdt 
trends generated for CD=1x103.  We note distinct behavior for 
each case and we suggest that the character in these wellbore 
storage solutions (for this particular case) is both accurate and 
distinct.  Similarly, in Fig. 12 we present the same suite of 
solutions for CD=1x1020.  The most obvious comment that we 
can make is that virtually all of the trends generated for the 
CD=1x1020 case are dominated by wellbore storage effects —  
i.e., the αD-parameter has virtually no influence on the re-
sponse of the solution for the CD=1x1020 case. 
 

The Pressure Buildup Case 
In this work we presume that the proposed solution is "linear" 
in that there are no pressure-dependent coefficients in the 
governing differential equation.  As linearity is presumed, we 
can use the theorem of superposition to account for the 
variation of rate which occurs in a pressure buildup test (we 
make the conventional assumption that a "pressure buildup" is 
a period of zero rate, preceded by a period of production, tp, at 
a constant flowrate. 
 

The mathematical expression of superposition for this case is 
given in the form of dimensionless pressure and time  
as fol-lows:4 
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We have used Eq. 7 to generate a series of cases where the αD 
and CD parameters are held constant (αD=1x10-3, and 
CD=1x103), where and tpD and kmin/kmax are varied.  The 
variance in the kmin/kmax parameter provides a "span" of out-
comes which illustrate the influence of the variable mobility 
function.  In addition, only a single value of the αD and CD 
parameters is used in order to capture the specific influence of 
the tpD and kmin/kmax parameters. 
 

Figs. 13a-13d illustrate cases for tpD=1x103, 106, 109, 1012 —  
respectively, where both the pwD and pwDdt functions are 
plotted versus ∆tD/CD.  For the tpD=1x103 case (Fig. 13a) we 
note an extreme influence of the producing time (tpD).  In Fig. 
13b (tpD=1x106) we note that producing time (tpD) does have a 
strong influence, but at least part of the response is unaffected 
by tpD effects at early times (small ∆tD/CD values).  For the 
case of tpD=1x109 (Fig. 13c) we find that tpD effects are only 

evident at late times (large ∆tD/CD values) —  this is expected 
since (∆tD/CD)maxCD=∆tD,max=1x109.  As such, ∆tD,max/tpD=1, 
and we would expect some influence of producing time effects 
(by analogy with the homogeneous reservoir solution).  Our 
final comparison, Fig. 13d, for the case of tpD=1x1012 we find 
no evidence of producing time effects —  which is expected 
since (∆tD/CD)maxCD=∆tD,max=1x109 and ∆tD,max/tpD=0.1 (the 
"drawdown" period is ten times the duration of the  
"buildup" period). 
 

In Fig. 14 we present a comparison of the time derivative 
functions (pwDdt) versus ∆tD/CD for all of the pressure buildup 
solutions as well as the pressure drawdown solution.  This 
comparison is useful to gauge the influence of tpD relative to 
the base solution (i.e., the drawdown solution).  We can assess 
the qualitative influence of tpD as being none (tpD=1x1012), to 
moderate (tpD=1x109), to significant (tpD=1x106), to  
extreme (tpD=1x103). 
 

We also considered cases where no wellbore storage effects 
in-fluence the pressure buildup solution —  and we would note 
that similar comments regarding the influence of the tpD-para-
meter can be made.  We elected to focus on cases which do 
include wellbore storage (and skin) effects in order to assess 
the practical influence of the tpD-parameter.  We will note that, 
as with the homogeneous reservoir case, producing time 
effects can be addressed (at least approximately) using the 
"effective time" correction proposed by Agarwal.4 
 

Our final comments with regard to the pressure buildup case 
are that this remains a topic for additional study.  We believe 
that we have validated (at least conceptually) that the variable 
mobility model may represent the behavior of some cases of 
reservoir performance in gas condensate reservoirs.  However, 
we believe that our concept of using a prescribed permeability 
profile may be inadequate —  and that we must also employ a 
prescribed diffusivity profile.  In short, we believe that we 
must consider the diffusive effects of the condensate bank in 
addition to the permeability (or effective/relative perme-
ability) profile.  Again, this is a recommendation for  
future work. 
 

Summary and Conclusions 
 

1. New Solution: We have proposed, developed, and veri-
fied new solutions (for pressure and the pressure deriva-
tive functions in terms of radial distance and time) for 
the case of a well producing at a constant flowrate from 
an infinite-acting radial flow system where the perme-
ability varies in radial distance and time (see Eq. 1 for 
the model employed in this work). 

 

Eq. 1 is proposed based on observations of well perfor-
mance behavior from numerical simulation of the gas 
phase for a radial gas condensate reservoir system. 

 

The relevant results in this work are given by Eqs. 3-5 
and we note that Eq. 3 cannot be resolved beyond the 
integral formulation as presented.  As such, all results 
for Eq. 3 are generated using numerical integration per-
formed in Mathematica.  The derivative formulations 
given by Eqs. 4 and 5 are closed form results —  and are 
computationally efficient as well as convenient func-
tional forms. 
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2. Comparison/Validation: The proposed solution is pre-
sented in comparison to numerical simulation results 
(for the ∂pD/∂rD formulation).  The ∂pD/∂tD formulation 
is compared to the 2-zone radial composite model as 
well as simplified cases of "sealing faults" —  the com-
parions indicate that the proposed solution does pro-
duce similar features and suggests the model would be 
an effective interpretation tool for well test analysis. 

 

Our presentation of the pwD(tD) and pwDd(tD) functions 
(which include wellbore storage and skin effects) indi-
cate that the influence of the α (or αD) parameter and 
the kmin/kmax ratio is substantive and unique for certain 
cases (e.g., low values of CD), while for higher values 
of CD wellbore storage effects dominate the response.  
This is analogous to say, the case of well performance 
in a dual porosity/naturally fractured reservoir. 

 

3. Pressure Buildup Case: This is a case for future investi-
gation.  The conventional pressure buildup formulation 
mimics the pressure drawdown case for the prescribed 
permeability profile.  This is not an unexpected 
behavior for this formulation —  and we suggest that 
this approach must be extended to include a variable 
"diffusivity" profile ((φµgcg)/kg) as well as a variable 
mobility profile (kg/µg) in order to capture the unique 
signature presented by the pressure buildup case. 

 

Nomenclature 
 

Field Variables (Pressure, Formation, and Fluid Properties) 
 

 B = Formation volume factor, RB/STB 
 cg = Gas compressibility, psi-1 

 ct = Total compressibility, psi-1 

 h = Net pay thickness, ft 
k or kg = Effective permeability to gas, md 
 kmax = Maximum effective permeability to gas, md 
 kmin = Minimum effective permeability to gas, md 
 pi = Initial reservoir pressure, psia 
 pwf = Flowing pressure, psia 
 pws = Shut-in pressure, psia 
 q = Flowrate, STB/D 
 qsf = "Sandface" flowrate, STB/D 
 qsur = "Surface" flowrate, STB/D 
 rw = Wellbore radius, ft 
 r = Radial distance, ft 
 t = Time, hr 
 tp = Production time, hr 
 ∆t = Shut-in Time, hr 
 α = Scaling term for pressure behavior, (cp-psi-1)/md  
  = Boltzmann transform variable (r2/(4t)) 
  = Viscosity, cp 
 

DimensionlessVariables 
 

 CD = Dimensionless wellbore storage coefficient 
 kD = Dimensionless permeability function  
 pD = Dimensionless pressure (generic) 
 pDdr = Dimensionless pressure derivative function in radial 

distance (Eq. 8) 
 pDdt = Dimensionless pressure derivative function in time 

(Eq. 7) 

 psD = pD+s, Dimensionless pressure with skin effects 
 pwD = Dimensionless pressure with wellbore storage and 

skin effects 
 pwDdt = Dimensionless pressure derivative function in time 

including wellbore storage and skin effects 
 qDwbs = Dimensionless flowrate for wellbore storage 
 rD = Dimensionless radius 
 tD = Dimensionless time 
 tpD = Dimensionless production time 
 ∆tD = Dimensionless shut-in time 
 D = Dimensionless Boltzmann transform variable 
 aD = Dimensionless empirical scaling term for pressure 

behavior 
 s = Skin factor, dimensionless 
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Appendix A — Derivation of the Pressure Derivative 
Functions with Respect to Time and Radius for the 
Case of a Radially-Varying Permeability Profile 
(Equivalent Liquid Case) 
 

In this Appendix, we derive two expressions for the pressure 
derivative (time and radial distance formulations) that consider 
the changing effective (or relative) permeability of the retro-
grade gas as condensate evolves with decreasing pressure.  
 

This derivation begins with the base diffusivity equation —  
i.e., the partial differential equation which describes the flow 
of a single phase fluid in a porous medium with respect to 
time and distance.  The effective permeability to gas in such 
cases will not be constant, but is dependent on the PVT and 
rock-fluid properties.  The primary contribution of this work is 
the development of a closed form analytical solution for the 
case of a radially varying mobility (or effective permeability) 
function in a reservoir system.  The subordinate contribution 
(which is, in some ways, more important than the solution) is 
our proposal of a simple functional relationship to represent 
the time and space-dependency of the gas mobility (or per-
meability) function. 
 

The base form of the diffusivity equation which considers a 
varying permeability with respect to radius is given as: 

t
p

c
.r

p
kr

rr t ∂
∂=





∂
∂

∂
∂ φµ 

00026370
11

 (Field units)...  (A.1) 

As mentioned above, we have proposed a general model for 
the behavior of the permeability to gas as a function of time 
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and radius.  Our proposed model is given in its 2 most basic 
forms as: 
























−+=

t
r

kkkk minmaxmin
21-

exp-1  )(
α

........  (A.2a) 












−−=

t
r

kkkk minmaxmax
21-

exp )(
α

.................  (A.2b) 

We note that the α-parameter in Eqs. A.2a and A.2b is an 
empirical constant, most likely related to the PVT charac-
teristics of the reservoir fluid, as well as the rock-fluid proper-
ties.  Our goal is not to assess the nature of the α-parameter, 
but rather, to use this as a mechanism to represent a complex 
process with a simple model.  Eq. A.2b is the primary form 
used in this Appendix, and we will note that Eqs. A.2a and 
A.2b have been validated conceptually via comparison with 
simulated performance for a gas condensate reservoir system. 
 

We consider the Boltzmann transform, which allows us to 
relate dimensionless time and distance: 

D

D
D t

r

4

2
=ε ...............................................................  (A.3) 

DD

D
t

r

t
r

αα

22
= ............................................................  (A.4) 

Substituting Eqs. A.3 and A.4 into Eq. A.2b yields: 









−−= D

D
minmaxmax kkkk ε

α
4-

exp )( ................  (A.5) 

Defining a "dimensionless" permeability, kD, we have: 
maxD kkk /= ...........................................................  (A.6) 

or, solving Eq. A.6 for the permeability, we obtain: 
Dmaxkkk =  

We note that we will use the terms "permeability" and "effect-
tive permeability" interchangeably in this derivation —  how-
ever, the variable in question is always effective permeability. 
 

Substituting the definition of "dimensionless" permeability 
(i.e., Eq. A.6) into Eq. A.5 gives us: 








 −








−−= D

D
D k

k
k ε

α
4

exp11
max

min ........................  (A.7) 

We need to transform Eq. A.1 into dimensionless form —  
hence, we state the dimensionless variables used in this work 
are as follows: (Field units formulation) 
 

Dimensionless Pressure: 

)(
2141

1
pp

qB
hk

.
p i

max
D −=

µ
...................................  (A.8) 

Dimensionless Time: 

t
rc

k
.t

wt

max
D 2

00026370
φµ

= ......................................  (A.9) 

Dimensionless Radius: 

w
D r

r
r = ...............................................................  (A.10) 

Substituting Eqs A.9 and A.10 into Eq. A.4 and solving for the 
αD parameter, we have:  

αφµαα
max

wt

wD

D
D k

rc

r.t
t

r

r 2

22

2
1

00026370
1==  

Or, 

αφµα
max

t
D k

c
.00026370

1= ......................................  (A.11) 

From Eq. A.11 we note that the α-parameter has the units of 
inverse diffusivity (i.e., diffusivity (k/(φµct)) has the units of 
(md/(cp-psi-1) —  field units formulation) —  therefore, α has 
the units of (cp-psi-1)/md.  Physically, we assign the properties 
of the fluid and rock-fluid interaction to the α-parameter —  
however, we consider α to be an empirical parameter, and, as 
such, we should not attempt to quantify the components of α, 
but rather, we should simply use α to qualify the influence of 
the fluid on the permeability profile. 
 

Substituting Eqs A.6, A.8-.10 into Eq. A.1 and rearranging 
yields the diffusivity equation in dimensionless form: 

D

D

D

D
DD

DD t
p

r
p

rk
rr ∂

∂
=








∂
∂

∂
∂1

...........................  (A.12) 

We note that for the case where k = kmax, Eq. A.12 reverts to 
the conventional diffusivity equation for a constant perme-
ability.  We also note that we have assumed a slightly com-
pressible fluid (i.e., a liquid) in the derivation of the diffusivity 
equation for radial flow (i.e., Eq. A.1).  The assumption of a 
"liquid" may seem incompatible with the concept of a gas case 
—  however, we are deriving a formulation for a "liquid" that 
will, in turn, be used for gases where the conventional gas 
pseudofunctions will be employed (i.e., pseudopressure and 
pseudotime).  Simply put, this case represents an "equivalent" 
liquid, modifications will be addressed using pseudofunctions 
that "convert" the case in question to the "equivalent"  
liquid case. 
 

Utilizing the Boltzmann transform we derive a relationship for 
pressure with respect to time and radius which includes the 
prescribed varying permeability model (i.e., Eq. A.2 or A.7). 
 

For convenience, we define the constants a and b as follows: 
)/1( maxmin kka −= ..............................................  (A.13) 

D
b

α
4= ................................................................  (A.14) 

Substituting Eqs. A.13 and A.14 into Eq. A.7 yields: 
][1 DD bexpak ε−−= ..........................................  (A.15) 

Applying the product rule to the left-hand-side (LHS) of Eq. 
A.12 we have: 

D

D

D

D

D
DD

D

D

D

D
D

D

D

D

D
D

D

t
p

r
p

r
rk

r
r

r
p

k
r
k

r
p

r
r

∂
∂

=




















∂
∂

∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂1

 

Multiplying through the left-hand-side by 1/rD gives: 

D

D

D

D

D
D

D

D

D

D

D

D

D

D
t
p

r
p

r
k

r
p

r
k

r
p

r
k

∂
∂=








∂
∂

∂
∂+

∂
∂+

∂
∂

∂
∂

 

Collecting like terms and consolidating the kD terms: 
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D

D

D

D

DD

D

D
D

D

D

D

D
t
p

r
p

rr
p

r
k

r
p

r
k

∂
∂

=







∂
∂

+
∂
∂

∂
∂+

∂
∂

∂
∂ 1

 

..............................................................................  (A.16) 
Utilizing the Boltzmann variable, εD, to transform Eq. A.16 
from rD and tD into εD, we have: 

01
11

2

2
=




















+++

D

D

D

D

DDD

D
d
dp

d
dk

kd

pd
εεεε

...........  (A.17) 

At this point we recognize that Eq. A.17 is the fundamental 
governing relation for fluid flow in our system where the 
mobility/permeability function is permitted to vary as a func-
tion of time and distance.  Eq. A.17 is a completely general 
result —  no assumptions have been made at this point. 
 

Our goal is to solve Eq. A.17 for an appropriate set of initial 
and boundary conditions.  The particular case where the Boltz-
mann transform applies is the case of a uniform initial pres-
sure profile in the reservoir (i.e., pD(rD,tD=0) = 0) and the case 
of an "infinite-acting" outer boundary (i.e., pD(rD ∞,tD) = 0). 
 

Recalling the definition of the Boltzmann transform variable, 
εD, we have: 

D

D
D t

r
4

2
=ε ...............................................................  (A.3) 

The initial and outer boundary conditions are expressed in 
terms of rD, tD, and εD as follows: 
 

Initial Condition: 

0)(

 ,0for 

0)0(

=∞→
∞→→

=≤

DD

DD

DDD

p

t

t,rp

ε
ε  

 

Outer Boundary Condition: 

0)(

 ,for 

0)(

=∞→
∞→∞→

=∞→

DD

DD

DDD

p

r

t,rp

ε
ε  

We note that in using the Boltzmann transformation, the initial 
and outer boundary conditions collapse to a single relation: 

0)( =∞→DDp ε .................................................  (A.18) 
This result is a unique product of the Boltzmann transforma-
tion —  for this particular case.  We will proceed with this 
result and next we consider the case of a constant flowrate at 
the well. 
 

Inner Boundary Condition: (Constant Rate) 

r
p

r
B
kh

.
q

∂
∂=

µ2141
1

...............................................  (A.19) 

Where Eq. A.19 is written directly from Darcy's law for a 
radial flow geometry.  Isolating the r(∂p/∂r) term, we have: 

kh
qB

.
r
p

r
µ

2141=
∂
∂

.................................................  (A.20) 

Substituting the definitions of dimensionless pressure, radius, 
and permeability (i.e., Eqs. A.6, A.8, and A.11) into Eq. A.20, 
and rearranging gives us the following result for the behavior 
at r=0: (i.e., the "line source" formulation) 

DrD

D
D kr

p
r

D

1

0
−=








∂
∂

=
........................................  (A.21) 

Transforming Eq. A.21 using the Boltzmann variable, εD, 
gives us: 

DD

D
D kd

dp

D

1
2
1

0
−=









→εε
ε ................................  (A.22) 

In order to develop a solution for Eq. A.17 we will utilize a 
"variable of transformation" that reduces the differential equa-
tion to a more convenient form.  At this point we note that 
Eqs. A.17, A.18, and A.22 are only a function of the Boltz-
mann transform variable, εD.  As Eq. A.17 is a second order 
ordinary differential equation, we can surmise that a solution 
can be obtained by twice integrating this differential equation 
(analogous to the homogeneous reservoir case).  This will be 
our path, but we will also use a variable of transformation to 
reduce the complexity for the integration of Eq. A.17. 
 

Our "variable of transformation," ν, is given by: 

D

D
d
dp

v
ε

=  

where 

2

2

D

D

D d

pd
d
dv

εε
=  

Making these substitutions into Eq. A.17 gives the following 
"compact form" of the differential equation —  we then will 
solve this relation by integration for the ν-variable. 

01
11 =




















+++ v

d
dk

kd
dv

D

D

DDD εεε
.....................  (A.23) 

Using Eq. A.15 in the 







+

D

D

D d
dk

k ε
1

1
 term from Eq. A.23: 

][1
][1

1
1

D

D

D

D

D bexpa
bexpab

d
dk

k ε
ε

ε −−
−+=








+ ......................  (A.24) 

Substituting Eq.A.24 into Eq. A.23 yields, 

0
][1
][11 =







−−
−+++ v
bexpa
bexpab

d
dv

D

D

DD ε
ε

εε
 

Isolating/separating the relevant terms we have: 

D
D

D

D
d

bexpa
bexpab

dv
v

ε
ε
ε

ε 







−−
−++−=

][1
][11

 
1

...............  (A.25) 

Setting up the integration of Eq. A.26 gives us: 

D
D

D

D
d

bexpa
bexpab

dv
v

ε
ε
ε

ε 







−−
−++−= ∫∫ ][1

][11
 

1
 

Expanding the right-hand-side integral gives: 

D
D

D
D

D
d

bexpa
bexpab

ddv
v

ε
ε
εε

ε ][1
][11

 
1

−−
−+−−= ∫∫∫  

Completing the integration, we have: 

βε
ε
εε +

−−
−+−−= ∫ D

D

D
D d

bexpa
bexpab

v
][1
][1

]ln[ ]ln[ ..  (A.26) 
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We note that the β-term in Eq. A.26 is a constant of integra-
tion which results from the indefinite integration.  The integral 
that can not be resolved directly in Eq. 26 must be addressed 
using tables of integrals, substitution methods, or a symbolic 
integration product (in this case, we used Mathematica  
(ref. 2)). 
 

From Mathematica we obtained the following result for the re-
maining integral: 





 −−+−=

−−
−+

=

−

∫
D

b

D
D

D

bae
b

b

d
bexpa
bexpab

I

D ε

ε
ε
ε

ε ]ln[
)1(

    

][1
][1

 

Substituting this result into the solution, we have: 

βεε ε +



 −−+−−= −

D
b

D bae
b

b
v D ]ln[

)1(
 ]ln[ ]ln[  

Exponentiating the solution, we obtain: 













 −−+−= −

D
b

D
bae

b
b

v D ε
ε

β ε ]ln[
)1(

 exp 
]exp[

 

Defining our constant of integration as c1=exp[β], and substi-
tuting this result into the solution, along with the definition 
ν=dpD/dεD, we have: 





 +−+−= −

D
b

DD

D bae
b

b
c

d
dp D ε

εε
ε ]ln[

)1(
 exp 

1
1  

..............................................................................  (A.27) 
Our next task is to determine the constant of integration, c1, 
where this can be accomplished using the inner boundary 
condition (i.e., Eq., A.22).  Multiplying through Eq. A.27 by 
the Boltzmann transform variable, εD, we have: 













 −−+−= −

D
b

D

D
D bae

b
b

c
d
dp D ε
ε

ε ε ]ln[
)1(

 exp 1  

..............................................................................  (A.28) 
Solving for the constant of integration, c1, we have: 

bac

1

1 )1( 
2
1

   −−=  

..............................................................................  (A.29) 
Substitution of the constant of integration, c1, (Eq. A.29) into 
the general solution (Eq. A.28) gives: 





 +−+−−−= −

D
b

D
b

D

D bae
b

b
a

d
dp D ε

εε
ε ]ln[

)1(
 exp 

1
)1( 

2
1

1

 

..............................................................................  (A.30) 
 

Definite integration of Eq. A.30 (using this initial condition) 
yields the solution in terms of pD(εD) —  this result is given as: 

DD
b

D

D
b

D

dbae
b

b
a

p

D εε
ε

ε
ε













 +−+−

∞
−−

=

−∫ ]ln[
)1(

 exp 
1

)1( 
2
1

  

1  

..............................................................................  (A.31) 
Reversing the limits of integration in Eq. A.37 eliminates the 
(-) sign and puts the result into a more traditional form. 

DD
b

D
D

b

D

dbae
b

b
a

p

D εε
εε

ε












 +−+−

∞
−

=

−∫ ]ln[
)1(

 exp 
1

)1( 
2
1

  

1  

..............................................................................  (A.32) 
Unfortunately, Eq. A.32 can only be integrated numerically —  
we have also employed Mathematica as the mechanism to 
compute the numerical integration of Eq. A.32 for the cases 
considered in this work. 
 

Solving Eq. A.32 for the time and radial distance derivative 
forms, we have: 



















+−+−−

=
∂
∂

−

D

Dt
r

b
b

D

D
D

t

r
bae

b
b

a

t
p

t

D

D

4
]ln[

)1(
 exp )1( 

2
1

      
2

4
1

2
 

..............................................................................  (A.33) 
And, 



















+−+−−

=
∂
∂

−

−

D

Dt
r

b
b

D

D
D

t

r
bae

b
b

a

r
p

r

D

D

4
]ln[

)1(
 exp )1(       

2
4

1
2

 

..............................................................................  (A.34) 
Where we recognize that the right-hand-sides (RHS) of Eqs. 
A.33 and A.34 are identical (except for the 1/2 multiplier in 
Eq. A.33) —  as such, equating Eqs. A.33 and A.34 gives the 
following identity: 

D

D
D

D

D
D r

p
r

t
p

t
∂
∂−=

∂
∂

 2  

..............................................................................  (A.35) 
We note that the identity given by Eq. A.35 is also obtained 
for the "homogeneous" case where kD = 1.  In fact, for the case 
of kD = 1, the entire sequence of results reverts to the "tradi-
tional" line source solution for a homogeneous, infinite-acting 
reservoir.  We also note that Eq. A.34 is typically applied as 
the absolute value of this result for comparative/illustrative 
plots (obviously the ∂pD/∂rD term is negative). 
 

Appendix B — An Approximate Technique for the 
Direct Addition of Wellbore Storage and Skin Effects 
 

In this Appendix, we present a simple, approximate technique 
for adding wellbore storage to dimensionless pressure solu-
tions.  This result is taken from Blasingame, et al.3 
 

The required result from (ref. 3) is given as: 

1)-](exp[-])exp[--(1
2 DDDwD tttp ωω

ω
θω

ω
ψ ++= ...... (B.1) 

Where the ω, θ, and ψ parameters in Eq. B.1 are given by: 

âC
b̂C

D

D+= 1ω .............................................................. (B.2) 
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DC
1=ψ ...................................................................  (B.3) 

DCâ
b̂=θ ..................................................................  (B.4) 

Where the â  and b̂  parameters in Eqs. B.2 and B.4 are given 
by: 

sDdsD ppâ −= ........................................................  (B.5) 

D

sD
dt

dp
b̂ = .................................................................  (B.6) 

And, 

D

sD
DsDd dt

dp
tp = .......................................................  (B.7) 

Eq. B.1 should provide results which are accurate to within 1-
2 percent of the exact solution —  for the pwD and the pwDd 
functions (where pwDd=tD(dpwD/dtD)). 
 

Appendix C — A Quadratic Formula for Numerical 
Differentiation 
 

Presuming a general quadratic polynomial, we have: 
2

210 tataay ++= .....................................................  (C.1) 
The coefficients of an interpolating LaGrange collocation 
polynomial are stated as follows: 

)(0 ityc = .................................................................  (C.2) 

ii

ii
tt

tyty
c

−
−=

−
−

1

1
1

)()( ....................................................  (C.3) 

))((
)()(

122

2102
2

−−−
−−

−−
−−−=

iiii

iii
tttt

ttccty
c ...................................  (C.4) 

Where we note that we have used a "backward" sampling for 
the coefficients (i.e., in terms of ti, ti-1, and ti-2) —  this is for 
convenience in our present work.  Alternatively, we could use 
forward or central sampling with no loss in generality. 
 

The a0, a1, and a2 coefficients for Eq. C.1 are defined in terms 
of the coefficients of the collocation polynomial as follows: 

12100    −+−= iii ttctcca ..............................................  (C.5) 
)( 1211  −+−= ii ttcca ..................................................  (C.6) 

22 ca = ....................................................................  (C.7) 
The derivative of Eq. C.1 is: 

taa
dt
dy

21 2+= ..........................................................  (C.8) 

Given a table of t and y(t) values, Eqs. C.2-C.7 are used to 
compute the required coefficients.  Eq. C.8 is used to compute 
the desired derivative. 
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Figure 1 – Gas mobility profiles for a gas condensate reservoir system (as a function of time and 
radius) (adapted from Roussennac1) — note the comparison of the simulated performance 
and the proposed models (i.e., the exp(x) and the erf (x) mobility models). 

 
 

 

 
 

Figure 2 – "Type curve" representation of the new model (tD(
�
pD/

�
tD) formulation (Eq. 4)).  Solution is 

plotted versus the inverse of the modified Boltzmann transform variable (( � DtD)/rD
2). 
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Figure 3a – "Type curve" representation of the new model (pD( � D) formulation (Eq. 3)).  Solution is 
plotted versus the modified Boltzmann transform variable (( � DtD)/rD

2). 
 

 
 

Figure 3b – "Type curve" representation of the new model (|rD(
�
pD/

�
tD)| formulation (Eq. 5)).  Solution is 

plotted versus the modified Boltzmann transform variable (( � DtD)/rD
2). 
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Figure 4a – Match of Roussenac data (digitized) and the new variable mobility model (type curve match) 
— pD( � D) versus ( � DtD)/rD

2 format. 
 

 
 

Figure 4b – Match of Roussenac data (digitized) and the new variable mobility model (type curve match) 
— |rD(

�
pD/

�
tD)| versus ( � DtD)/rD

2 format. 
 

 
 

Figure 5 – Match of Roussenac data (digitized) and the new variable mobility model (data/model 
match) — � p and r|dp/dr| versus r2 format.  Note the excellent match of the data and model 
functions throughout the reservoir — except for the "skin zone" near the wellbore. 
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Figure 6 – Pressure derivative type curve for a vertical well 
producing at a constant rate near a sealing fault in 
a homogeneous, infinite-acting reservoir. 

 

 
 

Figure 7 – Pressure derivative type curve for a vertical well 
producing at a constant rate in a composite radial 
system, various mobility ( � )/storativity ( � ) cases. 

 

 
 

Figure 8 – Combined pressure derivative type curve for the 
following cases: sealing faults, a single radial com-
posite region, and the proposed model for a ra-
dially-varying mobility profile. 

 

 

 
 

Figure 9a – Dimensionless pressure type curve for radial flow 
behavior including wellbore storage and skin ef-
fects (pwD versus tD/CD format).  This plot presents a 
comparison of the solution generated using nu-
merical inversion (as a surrogate for the exact 
solution) and the approximate solution technique 
proposed in ref. 3 and generated using Mathema-
tica. 

 

 
 

Figure 9b – Dimensionless pressure derivative type curve for 
radial flow behavior including wellbore storage and 
skin effects (pwD’ versus tD/CD format).  This plot 
presents a comparison of the solution generated 
using numerical inversion (as a surrogate for the 
exact solution) and the approximate solution tech-
nique proposed in ref. 3 and generated using 
Mathematica. 
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Figure 10a – Type curve plot (pwD and pwD’ versus tD/CD) —  CD = 
1x103, � D = 1x100, various kmin/kmax cases. 

 

 
 

Figure 10b – Type curve plot (pwD and pwD’ versus tD/CD) —  CD = 
1x103, � D = 1x10-1, various kmin/kmax cases. 

 

 
 

Figure 10c – Type curve plot (pwD and pwD’ versus tD/CD) —  CD = 
1x103, � D = 1x10-2, various kmin/kmax cases. 

 

 

 
 

Figure 10d – Type curve plot (pwD and pwD’ versus tD/CD) —  CD = 
1x103, � D = 1x10-3, various kmin/kmax cases. 

 

 
 

Figure 10e – Type curve plot (pwD and pwD’ versus tD/CD) —  CD = 
1x103, � D = 1x10-4, various kmin/kmax cases. 

 

 
 

Figure 10f – Type curve plot (pwD and pwD’ versus tD/CD) —  CD = 
1x103, � D = 1x10-5, various kmin/kmax cases. 
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Figure 11 – Drawdown type curve plot (pwD’ versus tD/CD) —  CD = 1x103, � D = 1x100, 10-1, 10-2, 10-3, 10-4, 10-

5, various kmin/kmax = 1x100, 10-1, 10-2, 10-3.  Note the unique influence of both the � D and the 
kmin/kmax parameters —  this comparison indicates that the proposed model has a strong 
characteristic behavior for CD = 1x103. 

 

 
 

Figure 12 – Drawdown type curve plot (pwD’ versus tD/CD) —  CD = 1x1020, � D = 1x100, 10-1, 10-2, 10-3, 10-4, 
10-5, various kmin/kmax = 1x100, 10-1, 10-2, 10-3.  Note that the � D parameter does not exert a 
strong influence on the characteristic behavior for CD = 1x1020. 
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Figure 13a – Type curve plot (pwD and pwD’ versus � tD/CD) —  tpD = 
1x103, CD = 1x103, � D = 1x10-3, various kmin/kmax 
cases. 

 

 
 

Figure 13b – Type curve plot (pwD and pwD’ versus � tD/CD) —  tpD = 
1x106, CD = 1x103, � D = 1x10-3, various kmin/kmax 
cases. 

 

 
 

Figure 13c – Type curve plot (pwD and pwD’ versus � tD/CD) —  tpD = 
1x109, CD = 1x103, � D = 1x10-3, various kmin/kmax 
cases. 

 

 

 
 

Figure 13d – Type curve plot (pwD and pwD’ versus � tD/CD) —  tpD = 
1x1012, CD = 1x103, � D = 1x10-3, various kmin/kmax 
cases. 

 

 
 

Figure 14 – Buildup type curve plot (pwD’ versus � tD/CD) —  tpD = 
1x103, 106, 109, 1012, CD = 1x103, � D = 1x10-3, various 
kmin/kmax cases.  Note the strong influence of the tpD-
parameter (analogous to the homogeneous 
reservoir case). 

 


