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Abstract
Published analyses of well tests in gas-condensate

reservoirs when pressure drops below the dew point are
usually based on a two-zone radial composite model,
representing regions of condensate drop-out around the
wellbore and of initial gas composition away from the well.
Laboratory experiments, on the other hand, suggest that three
different mobility zones could exist: (1) an outer zone away
from the well, with the initial liquid condensate saturation; (2)
a zone nearer to the well, with increased condensate saturation
and lower gas mobility; and (2) a zone in the immediate
vicinity of the well with high capillary number which
increases the gas relative permeability, resulting in a recovery
of much of the gas mobility lost from condensate blockage.
This paper investigates the existence of this latter zone in well
test data. An example of well test analysis is discussed, which
illustrates the difficulty of identifying such a zone as, in many
cases, build-up and/or drawdown data are dominated by
wellbore phase redistribution effects. Where the three zones
can be identified, data are analyzed using a three-zone radial
composite model to yield a complete characterization of the
near-wellbore effects, and in particular the knowledge of the
various components of the total skin effect: mechanical skin;
rate-dependent two-phase skin; and skin due to gas condensate
blockage. The existence of the three zones and the results of
the analysis are verified with a compositional simulator where
relative permeability depends on capillary number.

Introduction
Gas condensate reservoirs exhibit a complex behavior due

to the existence of a two-fluid system, reservoir gas and liquid
condensate1- 4. Three main problems are caused by liquid drop-
out when wells are produced below the dew point, namely: a
non-reversible reduction in well productivity; a less
marketable gas; and condensate-blocked pipelines.

Consequently, many laboratory5,6,11,12,33 theoretical1,2,4,9-14

and field investigations10, 15-23 have been conducted over the
last forty years to try to understand condensate reservoir flow
behavior. It has been found that, when reservoir pressure
around a well drops below the dew point pressure, retrograde
condensation occurs and three regions are created with
different liquid saturations14,24,25. Away from the well, an outer
region has the initial liquid saturation; next, there is an
intermediate region with a rapid increase in liquid saturation
and a corresponding decrease in gas relative permeability.
Liquid in that region is immobile. Closer to the well, an inner
region forms where the liquid saturation reaches a critical
value, and the effluent travels as a two-phase flow with
constant composition (the condensate deposited as pressure
decreases is equal to that flown towards the well). There may
also exist a fourth region in the immediate vicinity of the well
where low interfacial tensions at high rates yield a decrease of
the liquid saturation and an increase of the gas relative
permeability1,9. The first, third and fourth regions should
appear as three different permeability zones in a well test. The
existence of the fourth region is particularly important as it
would counter the reduction in productivity due to liquid
dropout. This “velocity stripping26” has been inferred from
laboratory experiments and numerical simulations but there
has been little evidence of it from well test data published to-
date.

The present paper presents preliminary results from a study
aimed at developing a better understanding, both qualitatively
and quantitatively, of near-wellbore effects in gas condensate
reservoirs from well testing. In the study, the conditions of the
existence of the different mobility zones due to condensate
dropout are investigated by analyzing well test data from
numerous gas condensate fields with different characteristics
and correlating them to the various reservoir and fluid
properties. Particular emphasis is on the identification of the
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enhanced gas relative permeability region around the well, as
it remains a key uncertainty in well deliverability forecasting1,

10, 23. The overall objective of the study is to develop new
methods for predicting well productivity in gas condensate
reservoirs.

Previous work
There are relatively few publications dealing with well

testing in gas condensate reservoirs1, 10, 11, 15, 17, 19, 21. Published
interpretations are performed mainly on build-up data, because
drawdown data are usually affected by flow rate fluctuations,
and in the particular case of gas condensate wells, by noise
due to condensate unloading in the wellbore. Analyses use
pressure1, 12, 17, single-phase pseudo-pressure11, 12, 21 or two-
phase pseudo-pressures10, 12, 19. The latter, which require good
experimental measurements of relative permeability curves
(rare for gas condensate systems) yield homogeneous looking
derivatives and give access to the mechanical skin only.

Single-phase pseudo-pressure, on the other hand, yield,
often composite-shaped derivatives below the dew point.
These usually resemble curve (a) in Figure 1 and suggest the
existence of two mobility-zones, one in the vicinity of the
wellbore with reduced gas effective permeability due to liquid
dropout, and one away from the well, with single phase gas
where the reservoir pressure is still above the dew point.
Analysis of such build-up data with a two-region composite
model provides the total skin and a 2-phase (condensate
blockage) skin19. The non-Darcy coefficient is often estimated
by matching drawdown or rate data with a simulator which
includes non-Darcy flow, by adjusting the parameter β of the
Forcheimer equation1, 10.

There has been no published well test data exhibiting a
region of increased gas mobility in the immediate vicinity of
the wellbore (the fourth region mentioned in the introduction)
which should yield a response similar to curve (b) in Figure 1.
The only mention of the possible existence of such a zone in
field data is found in Ref. 20, where the authors had to
incorporate liquid velocity stripping in their simulator to
match DST drawdown data from the Britannia field.

Simulation studies
Before proceeding with the analysis of field data, a number

of simulations were performed with a compositional simulator
(techSIM from AEA Technology), in order to verify the
conditions of the existence of the three mobility zones
described above and to develop an understanding of the
derivative shapes to be expected in a well test27. The simulator
calculates the fluid PVT properties using an equation-of-state
(EOS) and varies condensate and gas relative permeabilities as
a function of the capillary number, Nc, according to
correlations developed by Henderson et al.28,29. The simulation
model represents a single-well in a homogeneous, radial
reservoir of uniform thickness. The reservoir characteristics
are constant and are shown in Table 1. The model consists of
40 cells with an outer radius of 11,950 ft to insure that no
boundary effects are seen in the simulated well tests. Near the
wellbore, the cells are small to simulate the gas-condensate
near-wellbore behavior accurately. The cell size increases

logarithmically away from the wellbore. The model does not
account for wellbore storage and mechanical skin.

The simulation runs are designed to show the gas-
condensate behavior under different production conditions.  In
all cases, the initial reservoir pressure is set to just above the
dew point pressure, so that the liquid-phase condensate forms
at the start of production. An example of a pressure-rate
history for a simulation run is shown in Fig. 2.  This run
consists of 10 periods of alternating draw-downs and build-ups
(1DD, 2BU, 3DD, 4BU,…, 9DD, and 10BU). The first
drawdown is extended (100 days) to allow for the condensate
to accumulate in the near-well bore region, and the subsequent
periods are ten days long. Variations of this production history
are run with different rates, gas-oil relative permeability
models, and fluid compositions.

Fig. 3 shows how the liquid condensate (So) builds up
around the wellbore during the first production period, 1DD,
with and without capillary number (Nc) effects. Capillary
number effects reduce the condensate saturation around the
well and in the reservoir. As time increase, the reduction is
greater in the immediate vicinity of the wellbore and the
saturation takes a ‘doughnut’ shape around the well. The
corresponding gas relative permeability, shown in Figure 4,
exhibits a minimum between 10 and 100 feet in our example, a
maximum corresponding to the single phase gas away from
the well and an intermediate value in the few feet around the
well. These are the three mobility regions discussed in the
introduction and should yield three stabilizations on the
derivative.

The derivatives of the shut-in period, 2BU, following the
initial, extended drawdown, are shown in Figure 5 in terms of
single-phase pseudo-pressure, with and without Nc effects. As
expected from the condensate saturation distribution (Figure
3), the early-time mobility is much lower without Nc effects
than with Nc effects.  The three stabilizations on the derivative
with Nc effects are not obvious, but should exist as indicated in
Figure 5, based on the gas relative permeability distribution in
Figure 4. There should be only two stabilizations without Nc
effects.

Figure 5 is for a lean gas. The same test was simulated for
a rich gas and the gas relative permeability distributions are
compared in Figure 6. The rich gas does not show a minimum
and the corresponding derivative should have two
stabilizations only, as illustrated in Figure 7.

The simulation study thus confirms that, when capillary
number effects are important, the pressure derivative should
exhibit three stabilizations. In our example, the differences
between the various stabilizations are very small: the
permeability thickness selected was 1000 mD.ft, which seems
to be the limit beyond which well productivity is no longer
affected by condensate deposition30. Lower permeability-
thickness values should yield greater contrast between
stabilization levels.

Impact of wellbore dynamics
When looking at field data, it becomes obvious that one

reason for the lack of well tests showing a zone of increased
gas mobility around the wellbore is that such data are difficult
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to identify with confidence. When they may exist, they are
also likely to be hidden by wellbore phase redistribution
effects. Phase redistribution occurs when different phases flow
in different directions in the wellbore. Typical examples are
oil and water, gas and water, gas and liquid condensate, and
oil and gas in gas-lifted wells. It creates an increase in the
wellbore storage coefficient and may be present in drawdowns
or in build-up’s. This is different from a phase change, which
creates a decrease in the wellbore storage coefficient in a
build-up and an increase in the drawdown. The impact of
phase change on the pressure behavior is usually limited to
early times whereas an increase in wellbore storage due to
phase redistribution may dominate the test for many hours.

Recognizing the existence of wellbore phase redistribution
is important because it can create derivative shapes which
could be easily misinterpreted as they are similar to what
would be obtained with double porosity, partial penetration or
composite behaviors. Typical derivative shapes due to phase
redistribution (whether in a drawdown or in a build-up) are
shown in Figure 8. Curve (5) in Figure 8 corresponds to the
denser phase being re-injected into the formation.

An example of how phase redistribution can affect
multiphase flow pressure behavior and therefore the analysis
of the data is shown in Figure 9. Figure 9 is a log-log plot of
rate normalized pressure and pressure derivative for a
drawdown and the following build-up in a North Sea well
producing oil and water (Well A). Rate normalized means that
the pressure change and the derivative have been divided by
the applicable rate so that the derivatives stabilize at the same
level during radial flow in all the flow periods. In Figure 9, the
drawdown and build-up derivatives are different at early
times, as the well was open at the surface for the drawdown, 
and shut-in downhole for the build-up. They also, however,
differ at late times, with different apparent radial flow
stabilizations. Interpretation of production logs run during
both drawdown and build-up points to reverse water flow in
the wellbore during build-up. This suggests that the build-up is
entirely dominated by increasing wellbore storage and
therefore is not interpretable. Analysis in this example has to
be performed on the drawdown.

The same phenomena is often seen in gas wells producing
water. Figure 10 shows the pressure and rate history during a
well test in a dry gas well in Canada (Well B). One build-up
and five drawdowns are presented on the rate-normalised log-
log plot of Figure 11. Data in Figure 11 are plotted in terms of
normalized pseudo-pressure10.  The drawdown called “Flow
period 2” is at the beginning of the test, and is followed by the
build-up (Flow period 4). All drawdowns in Figure 11 except
the one corresponding to Flow period 15 exhibit similar
shapes (except for differences in skin and wellbore storage at
early times) and tend towards the same derivative radial flow
stabilization at late times. The behavior of the build-up (Flow
period 4) and of the drawdown Flow period 15, on the other
hand, are very different. This can be explained as follows:
during a drawdown, a mixture of gas and water droplets flows
up the well. When the well is shut-in, the droplets remain
suspended for a little while and then drop down, creating a
liquid cushion at the bottom of the well which may even be

reinjected into the reservoir, by gravity or by expansion of the
gas at the top of the well. This results in an increase in
wellbore storage effects which could dominate the entire
build-up behavior and render the analysis impossible. This
does not happen in drawdowns unless the concentration of
denser fluid in the wellbore is such that it cannot be lifted by
the gas to the surface. This would occur in drawdowns with
low flow rates, or in drawdowns following a previous
drawdown at a higher rate, such as Flow period 15. In the
particular example of Figure 11, although the shape of the
build-up resemble that of a composite behavior, the build-up is
entirely dominated by wellbore phase redistribution and not
interpretable: analysis with a composite model would
overestimate the gas mobility by a factor 3. Here again,
analysis must be performed on the drawdowns (Flow period
2).

Phase redistribution is also present in drawdowns and
build-up’s from gas condensate wells. Figure 12 is a rate-
normalized log-log plot of drawdown data (Flow periods 7,
14, 15 and 18) for a North Sea lean gas condensate well (Well
C). Pressures and derivatives are expressed in terms of single-
phase normalized pseudo-pressure10. Drawdown data are
obviously dominated by increasing wellbore storage. As
should be expected, this effect seems more pronounced and
appears to last longer for low flow rates  (Flow periods 14, 7
and 15). The higher rate drawdown Flow period 18 seems less
affected compared to the other drawdowns. Its derivative is
similar to that for the build-up’s, Flow periods 8, 18 and 21,
shown in Figure 13. Close inspection of the build-up’s shows
that they also are affected by phase redistribution in the period
1 to 10 hours, so it is possible that the drawdown Flow period
17 is affected as well. This has to be taken into account when
performing the analysis.

Early time well test behavior of gas condensate wells
One of the objective of our study is to confirm the

existence of “velocity stripping” in gas condensate wells from
well test data. This refers to an enhanced gas mobility zone at
high rates in the immediate vicinity of the wellbore due to
high capillary numbers. We are therefore looking for
derivatives exhibiting a three-region composite behavior,
similar to curve (b) in Figure 1. As discussed in the previous
section, the challenge is to avoid data affected by wellbore
phase redistribution.

Data for Well C in Figure 13 seem to show a three-region
composite behavior and therefore could be interpreted to
quantify the three mobility zones defined in the introduction.
The analysis is best performed on the drawdown data Flow
period 17, as it is the longest period of the test and shows more
of the various composite features. The final derivative
stabilization, corresponding to the mobility of the gas with the
initial condensate saturation, is easy to locate, slightly below
the last data points after 100 hours. The derivative stabilization
corresponding to the increased condensate saturation is
equally easy to locate, at the level of the derivative hump
around 10 hours. The location of the derivative stabilization
corresponding to the enhanced gas mobility, on the other hand,
is much more difficult to find. It must be between the other
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two, and therefore cannot correspond to the minimum at 1
hour. This minimum must correspond to wellbore phase
redistribution effects, as suggested by the shapes of the build-
up’s in Figure 14. There is therefore a significant uncertainty
in this particular example.

When a choice has been made for the first stabilization, the
analysis can be performed with a three region composite
model31 (Figure 15), based on a solution by Satman, et al.32.
The log-log match with such a model is shown in Figure 16:
(1) represents the three-region composite model with no
wellbore storage and skin; (2) is the same solution for constant
wellbore storage; and (3) is the changing wellbore storage
solution. The latter also provides a good match on the
superposition plot and for the simulation of the entire test. The
internal and external radii of the condensate “doughnut” are
100 and 500 feet, respectively.

Another example of the possible existence of three
derivative stabilizations is shown in Figure 17. The data are
from Well D, another North Sea lean gas condensate reservoir.
They can be interpreted with either a two-region or a three-
region composite model. Both analyses give parameter values
which are reasonable.  The complete analysis is shown in
Figures 18 to 20 (respectively, Horner match, simulation, and
skin versus rate plots). It yields all the components of the skin
factor.

Discussion and Conclusions
This paper presents the preliminary results of a systematic

study of well tests in gas condensate reservoirs. One of the
primary objectives is to investigate the conditions of the
existence of the different mobility zones due to condensate
dropout and velocity stripping.

It was found that phase redistribution is a major problem in
analyzing the data. It not only reduces the amount of data
available for analysis, but may also create drawdown or build-
up shapes that can easily be misinterpreted for reservoir
behaviors.

Examples have been shown that seem to exhibit three
stabilizations on the derivative, corresponding to three
mobility zones:  (1) an outer zone away from the well, with
the initial liquid condensate saturation; (2) a zone nearer to the
well, with increased condensate saturation and lower gas
mobility; and (2) a zone in the immediate vicinity of the well
with high capillary number which increases the gas relative
permeability, resulting in a recovery of much of the gas
mobility lost from condensate blockage.

These results have to be considered with caution, however,
until more systematic evidence of such behavior becomes
available.
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Fig. 17: Analysis of gas condensate Well D with the three-region
composite model (Log-log Match)
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Fig. 19: Analysis of gas condensate Well D with the three-region
composite model (Horner Match)
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Fig. 20: Skin versus rate, Well D

Parameters Value

Porosity 0.1

Absolute permeability 10 mD

Net-to-gross ratio 1

Conate water saturation 0.15

Wellbore radius 0.25 ft

Top Depth 8500ft

Initial Reservoir Pressure (lean gas) 3600 psia

Initial reservoir Pressure (rich gas) 6400 psia

Table 1: Parameters for simulations


