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ABSTRACT

This paper describes an effective methodology for accurate
cvaluation of liquid recovery during the gas cycling of
condensate reservoirs. First, the fluid flow problem is solved by
potential flow, which is shown to be applicable to compressible
gas flows also. The mass transfer and phase behavior within the
potential flow strcamtubes can then be calculated using one
dimensional reservoir simulators, which can efficiently control
the numerical dispersion errors to any desired level. An example
illustrates this method's efficiency and accuracy advantages over
conventional finite difference methods.

LINTRODUCTION

While some reservoirs are exploited for their oil (oil reservoirs),
and some for their gas (gas reservairs), there are reservoirs which
can produce substantial amounts of gas and varying quantities of
liquids depending on the depletion practice. ‘At discovery, these
condensate reservoirs may be filled only with rich gas, which on
conditioning in the production scparators yields liquid
condensate, or they may be filled with gas and small sawrations
of reservoir liquids which can be ea.ily vaporized and produced as
separator liquids or natural gas iiquids through similar surface
facilities. The amount of separator liquid produced per unit of
gas processed, the condensate yicld, depends on both the
scparator configurations and operating conditions,

If these condensate reservoirs are produced for the gas reserves
only, the reservoir pressuce decline can often lead to retrograde
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condensation of liquid range hydrocarbon components, This
buildup of liquid saturation, especially near the producing well
region, may interfere with well productivity, or, at a minimum,
lcave a valuable resource unexploited. Where economics
justifies the injection of cither separator or other gases 10
maintain the reservoir pressure and liquid yield in the produced
gas, additional liquid recovery results, The injected gas merely
acts as a carrier for transporting the volatile hydrocarbons from
the reservoir to the surface,

Evaluations of this process often require rore complex and
precise tools than those uscd for other processes because the
higher gas compression costs, deferred gas revenues, cost of
makeup foreign gases, and higher produced gas oil ratios
together render the project economics somewhat less favorable
than for typical oil reservoirs, However, where the right set of
conditions exist, gas cycling can be effectively used to produce
hundreds of millions of liquid barrels!2:3,

This paper describes an effective methodology for evaluating this
improved liquid recovery process through gas cycling. It is
computationally more efficient than the conventional finite
difference methods and gives very accurate answers. These
results can also be used as benchmarks to validate or estimate
the accuracy of other evaluation techniques, such as numerical
finite difference models, which are often plagued by numerical
dispersion errors,

The method consists of two steps. First, the fluid flow problem
is solved, and streamtubes arc defined. Then, the saturation and
compositional changes along the strcamtubes are solved
precisely by one-dimensional fully compositional models,

In most instances this decoupling of the fluid flow and phase
behavior computations are justified for condensate rescrvoirs
because the gas is the only moving phase, whose maobility is
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insensitive to the slowly changing liquid saturation. The one-
dimensional‘nature of the streamtube model then allows for high
precision estimates of gas and liquid recoveries more efficiently
than higher dimensional finite difference models of comparable
accuracy.

Streamtube models are not new. Popularized by Muskat4, they
have been used for the evaluation of waterfloods and other
incompressible flows for decades. What we will show in section
2 is that the potential flow streamlines that are developed for
incompressible flows are equaily valid for compressible gas
flows. The derivation of the streamlines also points out the
high level of accuracy afforded by this method, and the few, not
very serious, constraints which may limit its applicability.

The example of gas cycling in a condensate reservoir in Section
3 illustrates this method. Conformal mapping is used to
generate the exact streamlines, although other methods, such as
a conventional finite difference model of the fluid flow problem,
will dc just as well, The compositional modelling of the stream
tubes then provides accurate estimates of the wet gas, dry gas,
primary condensate, re-vaporized condensate, and stripped
volatile oil recoveries. At reasonable computational loads, these
one-dimensional model grids can be refined to control the
discretization errors to negligible levels,

The streamtube model results are then compaied with finite
difference model results in section 4, which also discusses the
strengths and limitations of this methodology by wav of
identifying and assessing the sources of errors in finite difference
and streamtube models.

Finally, Section § offers some concluding remarks and discusses
possible extensions of this method.

2 APPLICABILITY OF POTENTIAL FLOW
STREAMLINES IN COMPRESSIBLE GAS FLOWS

To show that streamtubes developed for incompressible potential
flows are also valid for compressible gas flows, we will
establish in this section the formal cquivalence of the
mathematical equations for the two types of flows.

The incompressible flows are govemed by Laplace's equanon for
the pressure with the appropriate boundary conditions?. The
govemning equations for compressible fiows, in terms of the real
gas pseudo-pressure’, will be shown to have identical structures,
and thercfore formally the same mathematical solutions. Of
course, the physical interpretation of the solutions must take
into account the differcnce between real and pscudo-pressures.

In this discussion, the mathematical equations are expressed in
dimensionless forms to better reveal the proper scaling of the
various physical parameters.

For most reservoirs, the bed thickness is much smaller than the
lateral dimensions along the bedding plane or the distances
between wells.  Under these conditions, the primary fluid
velocitics are along the bedding plane, and it is common, and
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well justified, practice in perturbation analysis to reduce the
problem to the two dimensions along the bed for the leadmg
order apgroxxmo e solutions. The compressible flow is then
governed’ b

rom 2
at = Vem Q)
where
2p
m = f Bz dp (2)
po

is the real gas pseudo-pressure’, and
Oucl?
T . uell o

represents the characteristic transient time scale for the reservoir
of characteristic dimension L. Typically, significant changes in
well rates of a gas cycling operation result from the mfrequem
major facility additions, while the transient time scale is at least
an order of magnitude smaller, Under these conditions,
transients rapidly die out like exp( ot/T), and the pseudo-steady-
state solution vahd most of the time between facllxty changes is
approxtmated by the leading term in the series solution of eq.
(1), i.c., by the solution of:

Vm=0 @

with a truncation error of the order of exp(-10). This, of course,
is the familiar Laplace equation for the incompressible flow
potential,

Likewise, constant pressure or no flow boundary conditions
translate directly into similar expressions for the gas pseudo-
pressure,

m = constant &)

Vmep = 0 ©

on the boundary, or portions thereof.

Thus, the goveming equations of the gas pseudo-pressure for the
compressible gas flow problem arc formally identical with those
for the incompressible potential flow problem. The potential
flow streamlines are therefore also streamlines for the gas
pscudo-pressure,

Marcover, from eq. (2), we see that

_ 2
Vm-qup V)
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which implies that the m-streamlines are everywhere parallel to
the pressure gradients, and therefore there is no gas flux across
the m-streamlines. This important observation is what permits
us to use potential flow streamtubes in our simplified approach
to the two-dimensional problem.

It should be noted that due to the non-linear stretching factor
(2/u*Z) in eq. (7), the isobaric contours in the gas flow problem
are different from those in the potential flow problem,

Another useful result from the potential flow problem is the
residence time for each streamtube, For the simple case of a
small number of injection sites, the distribution of residence
times can be used to estimate the produced gas composition, as
shown in Section 3.

Here again, the equations describing the compressible and
incompressible flows are formally identical. For example, a
one-dimensional incompressible streamtube of length L with end
point pressures fixed at P and P+AP has a residence time of ()
L2)/(K AP). The corresponding residence time for a
compressible gas streamtube is (<u.> L?)/(K AP), with a relative
error of the order of (AP/<P>) For high permeability
reservoirs, this relative error is very small, and the potential
flow solution can be used directly. For low permeability
reservoirs where (AP/<P>) may not be negligible, the
streamtubes are still valid, but direct integration is required to
estimate the residence time,

3. APPLICATION TO A MODEIL RESERVOIR PROBLEM

We illustrate the application of this technique to a model
problem. Simultaneous with a continuous reservoir pressure
decline, dry gas (one with all the condensible liquids removed by
separation facilities) is injected into a single injector (or a group
of injectors in the same area) into the interior of a reservoir
whose areal dimensions are much greater than its thickness, and
gas and associated condensate are produced in a row of producers
at one end of the reservoir (Figure 2).

The reservoir is initially filled mostly with original gas (wet
gas) containing intermediate hydrocarbons recoverable as liquids
in separators, and a small immobile saturation of vaporizable
liquid, which may be stripped by the injected dry gas. The total
liquid recovery associated with the cycling process, therefore,
comes from both the reservoir vapor and liquid phases. In this
example, they are present in approximately equal amounts. A
larger fraction of the first type of liquid is expected to be
recovered than the second, because the gas displacement process
recovery is more efficient than oil stripping recovery. Note that
this problem, although simplified somewhat to facilitate
illustration of the new technique, exhibits many complex
phenomena associated with the gas cycling process, including
the retrograde condensation of liquid from the wet gas under
pressurc decline and its subsequent re-vaporization by the
injection gas.
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This problem involves gas cycling in an essentially two-
dimensional domain. Since most hydrocarbon rescrvoirs have a
large areal extent in comparison to their thickness, this does not
really limit the applicability of the method. In general, an
arbitrary number of point injectors and producers may be
modelled. Furthermoie, a row of producing wells may be
approximated by a constant pressure producing boundary, and
faults by branch cuts in the complex domain for the potential
flow solution, Thus, a fairly complex reservoir may be
simulated using this technique, since it may be applied as long
as it is possible to obtain a solution for 2-D potential flow
within it, whether numerically or analytically,

In general, the solution for 2-D potential flow must be obtained
numerically, However, we will demonstrate and validate the
method on a simple model problem with one injector in a
uniform reservoir which has the shape of a half-ellipse. Since
one may vary its aspect ratio, an ellipse can be tailored to fit a
wide variety of boundary shapes. In addition, the analytical
solution technique for obtaining the potential flow solution is
straightforward. The rounded part of the half-ellipse is
considered to be impermeable, and the flat axis is made a

constant pressure producing boundary.

To begin with, we first obtain a solution for potential flow
within a circular boundary with a single injection well and a
constant pressure line at its diameter of symmetry (see Figure
1). Employing the method of images in conjunction with the
superposition property of linear equations, we find that the
complex potential results from a source and a sink inside and
outside the circle, For a unit circle with a source on the
diameter normal to the constant pressure line and no flow across
its boundary, the complex potential is given by’

¢ +iv = qlog iR ®

where the source strength is 2rq (area/unit time), A is the source
to center distance within the circle, and z is the location in the
complex plane. The stream function may be obtained by taking
the imaginary part. To obtain the corresponding result for the
source being located at an arbitrary position inside the circle, one
simply replaces A with A + iB (the new position of the source
in the complex plane), yielding

N ol YR el 1B,

q A-x A+x
-1 AysBx o) Ay+Bx
w1 Ax+By ¥ 9 1iAxBy ° ®

The solution for flow in a circle may be transformed to one valid
for another shape by means of conformal mapping in the
complex plane. Such a transformation preserves the boundary
conditions and the strength of the sources. In addition, the
ransformed solution based on ¢q. (2) still satisfies ¢q. (4) from
the previous section (the equation for 2-D potential flow). The
transformation required to map the interior of an ellipse to a
circle, unfortunately, is expressed in terms of elliptic functionsS,
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To avoid this complication, we shall use an approximation, To
this end, we employ the rational fraction transformation?,

{ = —E—5 (10

1 + e22

where z is the domain with the approximate ellipse and { is the
one with the circle. Here, € is a measure of the eccentricity of
the elliptical contour approximated, where 1+¢ is the length of
the semi-major axis and 1-g is the length of the semi-minor
axis. Since this is an approximate formula, the actual lengths
of the semi-major and semi-minor axes, which may be found by
setting { = 1 and { = i respectively, are

—2 2
W =TT 04 0= T+ (1+de) an

Thus, we solve for the & for which ag/bp has the proper ratio
(depending on the shape of the sllipse to be approximated). The
mapping, eq. (10) is substituted into eq. (8) to find the complex
stream function valid in the near ellipse domain. Upon
differentiation of the imaginary part, one obtains expressions for
the velocity in Cartesian (x,y) coordinates.

These velocities are then used, as outlined in section 1, to divide
the flow domain into discrete channels over which one-
dimensional (1-D) simulations accounting for phase behavior
may be carried out. To determine these flow streamlines, a
particle trajectory tracking method is used to integrate the
velocity field. A mid-point second order explicit Runge-Kutta
method is used!0. The results given by eqs. (9) - (11) are due to
Professor Milton Van Dyke of Stanford University.

If the channels are defined by the boundaries of streamlines
emanating at equal angular increments around the injector,
around which the flow is locally radial, cach channel will have
the same injection rate by symmetry (see Figure 2). Therefore,
the incompressible injected fluid breakthrough time is
proportional to the volume for a given channel. This provides a
means for computing the individual chanv2l volumes by using
the condition that their volumes sum to the total reservoir
volume. It is only necessary to insure that the volume in the
longest channel (the one containing the stagnation point) is a
small fraction of V (say about 1%), since the exact
determination of the breakthrough time is very difficult (but not
necessary) there,

Once the channels are determined, the problem has effectively
been changed from a 2-I) simulation into several 1-D problems,
Each of these 1-D "reservoirs” has well defined shape and
geometry and can be treated rigorously using a 1-D finite
difference compositional model. Flow velocity, inter-phase
mass transfer, and well rates can all be computed precisely.
Injection is allocated into the first cell of each of these channels
proportional to the angular extent about the injector subtended
by their corresponding stream tubes, and production amounts are
added up among them to obtain cumulative recovery and
fractional flow curves (for example, Figure 3) for the entire
reservoir as a function of time.
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For high permeability reservoirs, the pressure gradients are
small, and further simplification is possible. In this example, a
linear pressure drop is used across the length of each channel
from injector to producer. Such a quantity may be readily
approximated by considering the pressure drop across a channel
with the same length and average cross section of a stream tube.
Since the permeability and the flow rate are known, the pressure
Jdrop may be obtained. This was not done to r.fine estimates of
cross flow or residcnce time, but rather to approximate. the
effects of pressure drop on the phase split (i.e., retrograding or
vaporization) of the hydrocarbon components in each
streamtube.

For this example, results showed negligible sensitivity to the
particular form of any reasonable pressure profile. In general, a
more accurate pressure profile can be obtained by using a finite
difference flow model for each channel. Alternatively, the
velocity along the streamlines counld be integrated back to the
injector to obtain m(x,y), and this in tumn used to obtain the
pressure via eq. (7).

We point out that this scheme is susceptible to numerical
dispersion in the same way that the usual first order upwind
finite difference technique is, but the numerical dispersion is
constrained to act in only one dimension. Therefore, to show
that high levels of accuracy in these 1-D simulations may be
atained at reasonable computing cost, it is necessary 10 assess
the effect of streamwise numerical dispersion introduced upon
discretizing each channel along the direction of flow.

The profile in Figure 4 is compvied with 15 cells in the flow
direction at 8 = 0° (the streamtube emanating from the injector
in the direction opposite to the constant pressure producing
boundary). It is evident that there is a typical symmetric
Fickian concentration profile indicative of numerical
dispersion!!. As the number of grid blocks increases, the semi-
analytic model (SA) final recovery value approaches that
obtained from a direct mass balance calculation (which simply
uses the amount of injected gas to calculate the wet gas
remaining and is independent of streamwise discretization),
indicating the appropriate level of gridding required.

One advantage of this method is that the impact of streamwise
numerical dispersion on the total effluent profile is not very
severe because the majority of the channels are either far from
wet gas breakthrough or they are fully swept, Only the few
channels that are near breakthrough are affected. In this study,
30 cells per sreamtube were used. This number appears
sufficient to insure that gridding errors in gas and liquid recovery
present in the SA results are well below 1% (see Table 1) and
that the latter may be considered comparable to those obtained
from a finite difference solutior. at vanishing grid size,

In contrast, the conventional finite difference models grids are
not aligned with the flow directions, so that at any instant, the
dispersion errors affect a large proportion of the model grids,
Grid orientation effects will compound the problkems further,
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The wet gas recovery is given in Figure S, Note that it is nearly
100%. This is due to the large throughnut of injected gas. The
final cumulative liquid recovery, shown in Figure 6, is
substantially Jower, The reason for this is that not all the liquid
is recovered with the wet gas. First, the liquids that reside in the
reservoir gas phase before the start of production can retrograde
due to the declining pressure. Although some of this retrograde
condensate may be stripped later by injected gas behind the
displacement front, not necessarily all of it is produced. In
addition, the initial saturation of residual immobile oil is made
up of many different components, of widely varying molecular
weight. The lighter components are readily stripped by injected
gas, but the remaining resource, composed mainly of high
molecular weight hydrocarbons, becomes increasingly difficult
to be vaporized and recovered.

Through this model problem, we have shown that the SA is a
reliable and accurate tool for simulating the gas cycling
processes in which there is no rapid changes in reservoir liquid
saturations. The approach is not without approximation,
However, unlike in conventional finite difference models, the
errors are readily estimated and bounded. It was shown that the
SA can account for the complex phase behavior of the gas
cycling process including retrograding and subsequent
vaporization of condensed liquids, as well as pressure depletion
and stripping of reservoir oil. Therefore, for 2-D problems
involving gas cycling with effectively single phase, near unit
mobility flow, the SA can give accurate compositional
predictions which are not subject to the gridding effects normally
associated with conventional reservoir simulators,

4. COMPARISON WITH FINITE DIFFERENCE MODELS

The SA can now be used to assess the effects of gridding on
finite difference model (FDM) results. To check the FDM
against the SA in a meaningful way, it is necessary (o operate
them under similar conditions. To this end, we set up a 2-D
areal grid with a half-ellipse no-flow boundary, A single
injector was placed in the grid block corresponding to the
injector location in the SA.

Two different gridding orientations were tried in order to
investigate their effect on the FDM results, The first involved a
uniform 40 x 40 Cartesian grid with one of its axes aligned with
the semi-minor axis of the half-ellipse. This grid imposed a
constant pressure boundary condition by setting the transverse
permeability of the producing boundary grid blocks much higher
than the permeability of the rest of the reservoir, The second
scheme involved superimposing the half-cllipse contour of the
SA on a tilted 27 x 54 cylindrical polar 2-D grid with non-
uniform grid block pore volumes, then setting the pore volumes
of any grid blocks located outside the contour to zero, The first
method was chosen for the final comparison, although we point
out that liquid recoveries from the two schemes matched closely,
showing reasonable independence from grid orientation effects,

Initially, the FDM was run (o obtain injector-producer pressure
drops for the SA. Then both models were run with the same
injection and production rates. These last two sets of runs were
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then compared (see Figures 5-6). This procedure imposed equal
throughputs (injection and production rates) on the SA and FDM
in the comparison. In an average sense, the pressure histories of
the models must also follow each other because of mass balance.
The local pressures, however, were not identical between the two
models at all times.

Through comparison against a finite difference model (FDM),
the effects of gridding associated with the FDM can be
estimated. In addition, differences in predictions between the
two models can bring to light mechanistic effects brought about
by the interaction between gridding and transport of hydrocarbon
components between the liquid and vapor phases.

This comparison showed that both wet gas and liquid recoveries
were lower for the FDM than they were for the more accurate
SA. Recovery profiles of wet gas indicate how well the injected
gas sweeps the reservoir, while those of liquid recovery also are
affected by throughput of stripping gas as well as pressure,
Figure 5 shows, for a test case, the behavior of the wet gas
recovery with time, Figure 6 gives the comparisons between
the final liquid recoveries predicted by the two models. The
liquid recoveries are lower than the gas recoveries because the
original reservoir liquid saturation cannot be produced as
efficiently as the vapor phase components. Note also that at late
times, although the SA curve had leveled off, the FDM
cumulative wet gas recovery continued to rise. This was due
partly to streamwise numerical dispersion causing the right side
of the reservoir to remain partially unswept, with wet gas
fractions as high as 80%. The region with significant amounts
of wet gas remaining appeared to coincide with the shape of the
unswept region as predicted by the SA at late times (see Figure
7). Here, the contours are plotted as a function of dimensionless
time, which for this system is 0.125 per unit pore volume of
gas injected.

Ultimate liquid recoveries predicted by the FDM were about 4%
lower than those from the SA. At the level of gridding used (40
x 40), coarsening it to 20 x 20 did not greatly affect the results,
which decreased only by about another 0.7%. The wet gas
recovery, in all cases, was so close to 100% that the actual
magnitude of the differences in recovery between the two models
was small. The wet gas recoveries in the SA are actually upper
bounds since they do not reflect the holdup of wet gas at the
stagnation point. The reason is that after enough time, the
longest stream tube in the SA will be completely swept and no
wel gas will remain. In reality, however, there will always be a
tiny region associated with the stagnation point which is
unswept. Nonetheless, as was tested by finer discretization of
the stream tubes with minimal effect, the recoveries are -
sufficiently accurate, since the size of this region may be made
negligibly small,

It is clear that the lower wet gas recoverics predicted by the
FDM are primarily duc to numerical dispersion, since the
displacement of wet gas by injected dry gas is strictly a plug
flow process in the absence of physical dispersion. This is also
evident from Figure S, where premature injected dry gas
breakthrough causes the FDM to predict lower recoveries at
carlier times than the SA. At long times, however, the




| B g

6 A NUMERICAL-DISPERSION-FREE METHOD FOR MODELLING THE GAS CYCLING...

additional throughput will eventually recover the remaining wet
gas (left behind the front by numerical dispersion) from the
reservoir, and therefore the two models' predictions will approach
each other,

The liquid recoveries, on the other hand, behave differently.
Figure 6 shows that the FDM liquid recoveries approximately
follow the SA ones until near breakthrough. The two curves
then diverge before finally approaching different ultimate
recoveries at late times. Since the difference between the two
models' results in this case is higher than the corresponding
difference in the wet gas recoveries, and since it persists, the
mechanism should be different.

These differences can be explained by a mechanism which
accounts for both numerical dispersion and its resultant effect on
phase behavior. The relatively coarse gridding in the FDM
causes numerical dispersion which in turn allows dry gas to
overrun the displacement front. This dry gas mixes with the wet
gas ahead of the front causing the liquid yield (STB of liquid per
MSCF of gas produced) to decrease. Moreover, the richer
reservoir gas which has lagged behind the front does not have
enough intermediates to stabilize the comparatively heavy
liquids behind the front and therefore compensate for the effect of
the leaner gas ahead of it.

In general, the ultimate cumulative oil recovery is never 100%
because yield epproaches zero and an economically non-
vaporizable residual oil saturation is left behind. Numerical
dispersion simply accelerates this process. This effect of
numerical dispersion on the yield is nonlinear because the dry
gas leading the front does more to decrease the yield than the wet
gas lagging the front does to increase it. This is a consequence
of the negative curvature of the yield versus pore volume
throughput curve at early times. In other words, its negative
curvature causes the average yield to always be less than the
actual yield, clearly showing the indirect effect of numerical
dispersion smearing out the displacement front towards
decreasing final liquid recoveries.

In this comparison, it is not unusual that the FDM results did
not appear to approach the SA ones. There are several factors
which could explain this. The current level of gridding, even in
the refined case, is still relatively coarse. In addition, the flow is
inherently 2-D, and the effects of numerical dispersion are more
complicated in 1-D. Shorter streamlines have more throughput
and should be affected less, as would the larger ones which are
not yet past breakthrough at the end of the project,
Furthermore, the vaporization and retrograding of volatile oil is
much more complicated mechanistically than the simple
propagation of a miscible front. Thus, it would not be
surprising that gridding effects would act differently under these
circumstances than it would in a simple 1.D piston-like
displaccment.

3, CONCLUDING REMARKS

We have shown that the potential flow streamlines are
applicable to compressible gas fiows, and streamtube models are
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accurate methods for evaluating gas cycling of condensate
Teservoirs,

The comparison with finite difference model highlights the
utility of the semi-analytical (SA) model as an alternate means
of approaching a gas cycling simulation problem. Although it
has many strengths, such as its absence of numerical dispersion
and other gridding effects, it also has some limitations. The
major one is the restriction to 2-D flow. Sometimes, due to
reservoir heterogeneity, it is necessary to carry out a 3-D
simulation. For this case, pending the development of a true 3-
D stream tube model, it is necessary to resort to a conventional
finite difference calculation., In addition, the presence of
stagnation points in the flow complicates the division of the
reservoir domain into channels, each having a finite residence
time.

Despite these limitations, the SA model provides an efficient
tool which can help increase the confidence in predictions of
reservoir performance, giving recovery estimates that would
otherwise require a much higher grid resolution in a
conventional finite difference model. It gives 2. accurate
accounting of ficw profiles, Thus, mass transfer is confined
within the stream tubes, limiting the extent of transverse
dispersion. In addition, it is possible to model the complex
phase behavior associated with the gas cycling process. Finally,
the SA has control over its approximations, Errors can be
readily approximated and then bounded. In summary, the SA
represents a viable alternative to conventional reservoir
simulation of the gas cycling process, as well as a benchmark
against which finite difference calculations may be tested.

NOMENCLATURE

semi-major axis length of ellipse.
real part of source coordinate,
semi-minor axis length of ellipse.
imaginary part of source coordinate.
compressibility factor.

v

permeability.

length scale.

gas pseudo-potential,

normal vector to boundary,
pressure.

reference pressure.

areal flow rate,

total production rate of dry gas.
production rate of wet gas.

time.

characteristic time for pressurc transicats.
reservoir volume.,

x-coordinate,

€
.4

&
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y .

complex variable.

rcal gas compressibility factor.

transient decay constant, usually of order
unity,
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= eccentricity of ellipse,

= poiential function,

= porosity.

= stream function,
B = viscosity.
0 = “angle of emission from injector.
4 = transformed complex vatiabie,
<> = average value,
ACKNOWLEDRGEMENTS

The authors thank ARCO for permission to publish this paper,
They also owe the potential flow solution for a semi-ellipse
domain to Professor Milton Van Dyke of Stanford University.

REFERENCES

1.

Ahren, C.: "Application of Centrifugal Compressors for
High Pressure Gas Cycling, Arun Field,” presented at the
9th Annual Petroleum Association Convention, Jakarta,
Indonesia, May 1980, 279-304.

Bradner, T.: "Better Technology yickds more Oil,” Alaska
Constr. Oil (Dec. 1988), 20-21,

Emster, G. A., Bolling, J. D., Goecke, C. R., Seader, R.

e o N s

11,

E.Y.CHANG and T. S. LO 7

A.: "A Reservoir Enginecring Study of the Margham
Field, Dubai, U.AE." paper SPE 18307 presented at the
63rd Annual SPE Technical Conference, Houston, 1988,
447-462.

Muskat, M.: Flow of Homogeneous Fluids through
Porous Media, McGraw-Hill, New York (1937), J. W.
Edwards, Inc., Ann Arbor (1946).

Dake, L. P.. Fundamentals of Reservoir Engineering,
Elsevier (1978).

Batchelor, G. K.: An Introduction 10 Fluid Dynamics,
Cambridge University Press, Cambridge (1967) 189,
Milne-Thompson, L. M.: Theoretical Hydrodynamics,
MacMillan and Co., London (1938) 244,

Kober, H.: A Dictionary of Conformational
Representations, Dover (1957) 177.

Van Dyke, M.: Mechanical Engineering Department at
Stanford University, Stanford, California. Personal
communication,

Press, W. H., Flannery, B. P., Teukolsky, S. A.,
Vetterling, W, T., Numerical Recipes, Cambridge
University Press, Cambridge (1986) 550-551.

Collins, R. E: Flow of Fluids through Porous
Materials, Reinhold, London (1961) 205.

Table 1: Channel gridding sensitivity for the SA.

Cells Liquid Recovery
15 79.4%
30 79.6
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Gas Recovery

97.0%
97.7
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Fig. 1 -- Unit circle in the complex plane showing
location of A.
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Fig. 2 -- Streamlines emanating at equally spaced
angles from the injector.
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Fig. 3 -- Fractional flow of wet gas.
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Fig. 4 -- Gas fractions from the 0° channel.
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Fig. 5 -- Comparlson of wet gas recovery between Fig. 6 -- Comparlson of liquid recovery between SA
SA and FDM, and FDM.

Fig. 7 - Injected gas front at various dimensionless
times.
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