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Abstract

Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir,

first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The

effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and

reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space.

The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the

viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various

dimensionless numbers.

Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions

are identified where certain forces are more important than others. Based on reservoir pressure development, liquid

condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir

permeability has been reached.

The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir

model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces,

demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Gas condensate reservoirs are characterized by gas

condensation and liquid drop out in the reservoir

under normal production. The extent of condensation

under isothermal depletion varies considerably and is

to a large extent related to the temperature difference
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between the critical temperature of the fluid and the

reservoir temperature. In gas condensate reservoirs

where these temperatures are naturally close, relative-

ly large amount of liquid condensate can drop out,

causing alternating flow behavior on several scales in

the reservoir (Williams and Dawe, 1989).

The drop out of liquids represents to a large extent

lost production and the condensate deposited is gen-

erally considered to be a hindrance to normal gas

flow. In particular is a problem in the near well region,

where loss of well productivity is a persistent prob-
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lem. The general concern and uncertainty related to

well deliverability (Fevang and Whitson, 1996) and to

reservoir productivity in general are basically a result

of the continued liquid drop out in gas condensate

reservoirs.

Reservoir modelling and numerical simulation of

gas and gas condensate production depend clearly on

accurate descriptions of both fluid(s) and reservoir

formations. In addition, proper understanding of fun-

damental aspects of the dynamics of gas and liquid

condensate during production is certainly not to be

underestimated. The basic understanding of funda-

mental forces and their relative strengths can be

directly related to the effective permeability (Ragha-

van and Jones, 1996; Fulcher et al., 1983; Morrow

and Songkran, 1981).

In this article, we will discuss the various funda-

mental forces, their relative strengths and the variation

in strengths as function of time and space. The

purpose of this article is to present a principle set of

forces, the set of ratios between forces and on this

basis, define a complete set of dimensionless numbers.

These numbers are presented as function of pressure

and radius position in a cylindrical test model, simu-

lating somewhat idealized reservoir conditions.
2. Fundamental forces

At pressures lower than the dewpoint pressure

( p < pdew), two hydrocarbon phases will be present

in the reservoir. During the process of natural gas

production, four fundamental forces will act on the
Fig. 1. Cylindrical pore channel for vis
fluids. These forces are the viscosity (V), the capillary

(C), the gravitational (G) and the inertial (I) force.

The viscous forces is commonly understood as the

intermolecular interaction within the fluid itself and

relative to the bounding conditions such as the pore

channel wall or other fluids. This force causes a

velocity profile to develop across the flow channel

and is responsible for the viscous pressure loss in the

reservoir.

In the presence of two or more phases, i.e., gas and

liquid condensate, the interface between the two phases

represents a pressure difference under dynamical flow

conditions. The importance of capillary forces is relat-

ed to wettability in general and the spreading of the

wetting phase in particular (Coskuner, 1999).

The gravitational force is always active in all parts

of the reservoir. In reservoir fluid flow, the gravity

force can be of importance in situations where the

fluids have different densities, as in the case of gas

and liquid condensate.

The inertial force is associated with the redirection

of fluid flow in the porous media. In linear flow, i.e.,

flow in a strait tube, no inertial forces are active. In a

porous media, on the other hand, a continuous redi-

rection of flow is taking place as the hydrocarbon

molecules are moving between the grain minerals.

2.1. Ratio of viscous and capillary forces

The ratio of viscous and capillary forces is easily

illustrated by an example of linear flow in a cylindri-

cal pore channel of length L and diameter 2R, as

depicted in Fig. 1. The liquid condensate is believed
cous and capillary pressure drop.
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to wet the solid surface of the pore channel, and the

wetting angle is h. The flow of gas and condensate is

taking place at a constant pore velocity vg.

The viscous pressure loss DPV, is the sum of the

pressure loss in the gas, DPg and in the condensate

phase, DPo. Using the Poiseuille’s law, we may

write

DPV ¼ DPg þ DPo ¼ 8
tg
R2

ðlgxþ loðL� xÞÞ ð1Þ

where lg and lo are the viscosity of gas and

condensate, respectively. x is the position of the

capillary interface and is on average equal to L/2.

The capillary pressure drop PC, across the interface

in a capillary tube is given as

PC ¼ 2rgocosðhÞ
R

ð2Þ

where rgo is the interfacial tension and h is the wetting

angle.

The ratio between viscous and capillary forces is

therefore written

DPV

PC

¼ tglo

rgocosðhÞ
2L

R

lg

lo

þ 1

� �
ð3Þ

We may safely assume the gas viscosity to always

be less than the condensate viscosity, i.e., lg b lo.
For a capillary tube, the ratio of tube length over tube

radius would normally be much larger than one, while

this ratio in an interconnecting pore network could be

assumed to be close to one, i.e., 2L/R~1.
Fig. 2. Linear pore channel f
Based on these assumptions, a capillary number NC

which demonstrates the ratio of viscous over capillary

forces can be defined,

NC ¼ tglo

rgocosðhÞ
ð4Þ

2.2. Ratio of gravitational and capillary forces

The condensation of gas leads to the formation of

liquid condensate which has a higher density than the

gas phase, where qo>qg for all pressures lower than

the dew point pressure, p < pdew.

The gravitational force will act on a freely floating

liquid condensate drop, by pulling it downwards

towards the lower edge of the pore channel, as

depicted in Fig. 2. Similarly, we may also assume

the gravitational force to be responsible for the slow

and constant movement of liquid condensate to lower

potential energy, as small droplets on the pore walls

itself.

Assuming the liquid drop to be small, we may

consider the droplet to be spherical, with a radius Rd.

The gravitational pressure difference or buoyancy,

DPG, forcing the droplet on a downward curving path

is

DPG ¼ Rd

3
Dqgog; ð5Þ

where Dqgo = qo� qg is the density difference and g is

the gravitational constant.
or gravitational effect.
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The ratio of the gravitational force over the capil-

lary force is thus

DPG

PC

¼ RdR

3

Dqgog

rgocosðhÞ
ð6Þ

If we associate the surface RdR/3 with an imagin-

able surface characterized by the absolute permeabil-

ity k, of the porous medium, the ratio between the

gravitational force and the capillary force can be

expressed by the Bond number

NB ¼
kDqgog

rgocosðhÞ
ð7Þ

2.3. Ratio of viscous and gravitational forces

A dimensionless number describing the ratio of

viscous over gravitational forces is easily defined as

the ratio of the capillary number over the Bond

number, N(V/G) =NC/NB, and we find

NðV=GÞ ¼ tglo

kDqgog
ð8Þ

2.4. Ratio of inertial and viscous forces

Inertial forces are present in all aspects of fluid

flow in porous media. The inertial force is responsible

for keeping the fluid molecules on the track when

moving around the grain minerals. In a curved pore

channel as depicted in Fig. 3, the inertial force will

insure the nonlinear movement of fluid molecules

around the two circular grains.
Fig. 3. Circular curved pore chan
The force acting on gas molecules following a

circular path of radius Rr can be written

DFI ¼ ADLqg

t2g
Rr

; ð9Þ

where A is the cross-section of the pore channel, DL is

a line segment along the flow path and tg is the

average gas velocity.

Using Poiseuille’s equation for fluid flow in a

cylindrical tube with a constant cross-section A= pR2,

as presented above, the pressure drop per length is

DPI

DL
¼ qg

t2g
Rr

: ð10Þ

Similarly, we may define the viscous pressure drop

per length for viscous flow by using Poiseuille’s

equation, and by comparing the two expressions, we

find the ratio,

DPV=DL

DPI=DL
¼

lg

tgqg

8Rr

R2
; ð11Þ

where tg, qg and lg are the gas velocity, density and

viscosity, respectively, of the flowing gas.

Considering the length 8Rr/R
2 to be proportional to

the square root of the permeability k, we can define a

dimensionless number demonstrating the ratio be-

tween viscous and inertial forces

NðV=IÞ ¼
lg

vgqg

ffiffiffi
k

p ð12Þ

The dimensionless number N(V/I) is related to

porous flow, but can be associated with the reciprocal
nel depicting inertial forces.
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of Reynolds number, as generally the same variables

are involved.

2.5. Definition of dimensionless numbers

As seen above, four dimensionless numbers can be

defined as ratios of viscous, capillary, gravitational

and inertial forces; N(C/V) = 1/NC, N(C/G) = 1/NB,

N(V/G) =NC/NB and N(V/I) as above.

Based on the four fundamental forces, there exist

all together 12 dimensionless ratios of which six are

the reciprocal of the others. These ratios can be

systematically presented in the form of a matrix:
Forces C V G I

C 1 N(C/V) N(C/G) N(C/I)

V N(V/C) 1 N(V/G) N(V/I)

G N(G/C) N(G/V) 1 N(G/I)

I N(I/C) N(I/V) N(I/G) 1
It is practical to view the dimensionless numbers in

the matrix above in relation to the relative strength of

the forces involved. Since the capillary force, in a

strongly wetted porous medium, can be considered to

be the strongest force, followed by the viscous and

then the gravitational and the inertial forces as the

weakest forces, we may choose to compare the

different forces by viewing the following dimension-

less numbers: N(C/V), N(C/G), N(C/I), N(V/G), N(V/I)

and N(G/I) (see the dimensionless number above the

diagonal in the matrix above).

Following the listing above: N(C/V), N(C/G), N(V/

G) and N(I/V) are already known. The numbers N(I/C)

and N(I/G) are unknown, but can easily be defined.

NðI=CÞ ¼ NðI=V Þ=NðC=V Þ ð13Þ

NðI=GÞ ¼ NðI=V Þ=NðV=GÞ ð14Þ

Finally, the following six dimensionless numbers

can be defined:

NðC=V Þ ¼ rgocosðhÞ
tglo

; ð15Þ
NðC=GÞ ¼ rgocosðhÞ
kDqgog

; ð16Þ

NðV=GÞ ¼ tglo

kDqgog
; ð17Þ

NðC=IÞ ¼
lg

lo

rgocosðhÞ
t2gqg

ffiffiffi
k

p ; ð18Þ

NðV=IÞ ¼
lg

tgqg

ffiffiffi
k

p ; ð19Þ

NðG=IÞ ¼
lg

lo

gDqgo

ffiffiffi
k

p

t2gqg

: ð20Þ
3. Calculation of dimensionless numbers

The parameters used in the definition of dimen-

sionless numbers, Eqs. (15)–(20), are limited to the

following seven independent variables: tg, lo, lg, rgo,
qg, qo and k. The wetting angle h is assumed to be

close to zero, indicating strongly oil wet conditions. A

representation of the dimensionless numbers are given

by a numerical representation of these variables,

where a test case scenario, involving data from an

actual light gas condensate reservoir has been chosen.

3.1. PVT simulations

The molar composition of the test fluid is given in

Table 1. The corresponding reservoir pressure and

temperature are 437 bar and 392 K, respectively.

PVT simulations, based on the data presented

above, have been performed using a commercial

available PVT simulator (PVTsim from Calsep), where

the Soave-Redlich-Kwong (SRK) equation of state

with the Peneloux molar volume correction is used.

The results of these simulations are presented in Fig. 4

for the viscosity data, where the calculations are based

on the corresponding states principles in the form

suggested by Pedersen et al. (1984) and Pedersen



Table 1

Molar composition (in %) of gas condensate test fluid

Compounds N2 CO2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 C7 C8 C9 C10
+

Composition 0.78 8.72 71.00 8.56 4.67 0.71 1.23 0.41 0.41 0.45 0.66 0.70 0.41 1.29
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and Fredenslund, (1987). Fig. 5 presents the interfacial

tension data, calculated using the procedure of Wei-

naug and Katz (1943), where the interfacial tension is

expressed in terms of the parachors of the individual

components. In Fig. 6 for the density data. All varia-

bles, lo, lg, rgo, qo, qg and Dqgo are given as function

of pressure, ranging from 0 to 450 bar for gas variables

and from 0 to 367 bar (dew point pressure) for those

variables describing liquid condensate behavior.

3.2. Reservoir simulations

In order to calculate the gas velocity vg, under

reservoir conditions, simulation of gas flow has to be

performed. A custom-made reservoir simulation mod-

el has been used in these simulations, where idealized

reservoir conditions have been assumed.

The reservoir is cylindrical shaped with the well at

the center position. The outer radius rw = 360 m and

the well radius rw = 0.175 m. The thickness of the

reservoir, h = 50 m and the well is perforated along the

whole reservoir thickness. Porosity and connate water

saturation are both 20%. The reservoir is homogenous

with an isotropically distributed absolute permeability
Fig. 4. Gas and condensate viscosity as function of pressure.
k equal to 10 mD. The pore volume Vp of approxi-

mately 4 106 Sm3 is produced at a constant surface

flow rate, qg = 0.5 106 Sm3/day.

The pressure profiles given in Fig. 7, represents the

mean reservoir pressure p̄ and the bottom hole pres-

sure pbh. As seen from this figure, the production

period down to a minimum bottom hole pressure of 10

bar is approximately 3.5 years.

The reservoir pressure distribution in time and space

can be represented by the following simple formula,

insuring a radially and logarithmic increasing pressure

distribution under semi steady-state flow conditions

pðr; tÞ ¼ pbhðtÞ þ ðp̄ðtÞ � pbhðtÞÞ
lnðr=rwÞ
lnðre=rwÞ

ð21Þ

Fig. 8 shows the pressure field as function of time

and radius position. The well skin is neglected (S = 0)

in the calculation above and similarly is the increased

pressure drop induced by liquid condensation in the

reservoir not considered at this point. The numerical

representation of the pressure field shows that after a

certain time, the pressure in most parts of the reservoir

is lower than the dew point pressure and that this

situation prevails for about 3/4 of the total production
Fig. 5. Interfacial tension as function of pressure.



Fig. 6. Gas and condensate density as function of pressure.
Fig. 8. The pressure distribution in time and space for a cylindrical

reservoir.
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period. Thus, the process of liquid drop out is active in

most parts of the reservoir for most of the production

period.

3.3. Pore velocity

The surface gas rate qg,sc is constant as pointed out

above. Thus, the reservoir gas rate qg,res is given

qg;resðpÞ ¼ BgðpÞ � qg;sc; ð22Þ

where Bg is the volume factor for gas at pressure p.
Fig. 7. Pressure decline in cylindrical reservoir as function of time.
The bulk velocity vg,bulk at a radial cross-section

Ares = 2pr�h in the reservoir is thus given

vg;bulkðr; pÞ ¼
BgðpÞqg;sc
2pr � h : ð23Þ

The pore velocity is proportional to the bulk

velocity, vg,pore = vg,bulk/(/(1-Swc) cos2(a)), where a
is the tortuosity angle, defining the crookedness of

porous gas flow. / and Swc are the porosity and

connate water saturation, respectively. The gas vol-

ume factor Bg is defined by using the extended real

gas law where liquid condensation in the reservoir is

represented by the surface molar liquid–gas ratio. The

gas pore velocity is then written

vg;poreðr; pÞ ¼
1

/ð1� SwcÞcos2ðaÞ
ZðpÞ
2pr � h

Tres

Tsc

� psc

p
ð1þ RMLGðpÞÞ � qg;sc; ð24Þ

where RMLG is the molar liquid–gas ratio (at surface

conditions). The pore velocity, above, is not corrected

for the effect of liquid condensation that will reduce

the pore space available for gas transport. Thus, the

effective pore velocity, in presence of liquid conden-

sate, will always be higher than presented in the

formula above.

Fig. 9 shows the pore velocity field in the radius–

pressure plane. The lowest flow velocity tg,pore = 0.1



Fig. 9. Pore velocity as function of reservoir radius and pressure.

Fig. 11. Normalized ratio of viscous and gravitational forces.
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m/day, is found at the reservoir outer boundary and at

initial pressure, while the highest pore velocity is

approximately equal to 6500 m/day, close to the well

at minimum bottom hole pressure. The pore velocity is

increasing as the gas moves closer to the wellbore for

all pressures, but the highest pore velocities are found

at the lowest reservoir pressures. The increase in pore

velocity is increasing as the pressure is decreasing.

3.4. Dimensionless numbers

Based on the calculations performed above, we are

now in a position to calculate the dimensionless

numbers defined in Eqs. (15)–(20).
Fig. 10. Normalized ratio of viscous and capillary forces.
All plots of dimensionless number (Figs. 10, 11,

13, 14 and 15 are given as functions of radial

distance and pressure, except the dimensionless

number N(C/G), Fig. 12, which does not depend

on pore velocity and thus is radial independent. All

plots depict the absolute value of ratios between all

four forces.

The dynamical range of the various dimensionless

numbers as well as the pore velocity are represented

by minimum and maximum numbers and presented in

Table 2.
Fig. 12. Normalized ratio of capillary and gravitational forces.



Table 2

Dynamic range of pore velocity and dimensionless numbers

relative range

1.3� 10� 1 V tg,poreV 6.4� 103 4.8� 104

3.9� 102 VN(C/V)V 4.6� 106 1.2� 104

1.8� 106 VN(C/G)V 2.3� 107 1.2� 101

2.1�104 VN(C/I)V 6.9� 1011 3.3� 107

1.2� 100 VN(V/G)V 5.7� 104 4.8� 104

5.2� 101 VN(V/I)V 2.6� 105 5.0� 103

9.1�10� 4 VN(G/I)V 1.7� 105 1.9� 108

Fig. 14. Normalized ratio of inertial and capillary forces.
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As can be seen from Table 2, the dynamical range

of the dimensionless numbers N(C/V), N(V/G) and

N(V/I), do all span a range of about four orders of

magnitude, where the important parameter is the pore

velocity. In the case of the ratio of capillary over

gravity forces, N(C/G), there is no pore velocity

dependency and the dynamical range is only about

one order of one magnitude. For N(I/C) and N(I/G),

the dynamical range is in the order of about eight

orders of magnitude, proportional to the square of

pore velocity.

The absolute scale of dimensionless numbers, as

presented in Figs. 10–15, does most likely not de-

scribe the competition between the four forces cor-

rectly. In Fig. 10, as an example, the capillary force is

totally dominating the viscous force at all times, in all

parts of the reservoir by at least two orders of

magnitude. This is obviously in disagreement with

observations and does not represent a correct inter-

pretation of the data presented. On the other hand, it is

more conceivable to interpret the observation in Fig.

10, as a statement that the relative importance of the
Fig. 13. Normalized ratio of inertial and viscous forces.
capillary force compared to the viscous force is

drastically reduced when approaching the well.

Based on the relative change of the different

dimensionless numbers, the following general state-

ments can be made:

1. The relative importance of the inertial force

compared to the capillary, the gravitational and to

a lesser degree the viscous force, is drastically

increasing as function of decreasing radial position

and pressure. See Figs. 13–15. The effect of

inertial forces is therefore primarily of importance

in the close vicinity of the wellbore. Compared to

the capillary and the gravitational force, in

particular, the inertial force is relatively more

important as pressure is reduced. Since the

crookedness of the porous medium is reciprocal

to the pore velocity, as presented in Eq. (24), the
Fig. 15. Normalized ratio of inertial and gravitational forces.



Fig. 16. Representation of forces and their region of importance

relative to radial dimension and reservoir pressure.
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inertial force may be relatively more important in

those parts of the reservoir. Gravitational segrega-

tion is therefore less likely in those parts of a

reservoir where the effective crookedness is large.

In the bulk part of the reservoir, it is safe to neglect

the effect of the inertial force, as the fluid flow here

is primarily defined by the viscous, the capillary

and the gravitational force.

2. The viscous force is proportional to the pore

velocity and thus relatively more important than

both the capillary and the gravitational force close

to the wellbore. Compared to the capillary force, as

seen in Fig. 10, the viscous force is, on the other

hand, relatively reduced as the pressure is reduced,

primarily due to the increase in interfacial tension

as function of pressure. In the bulk part of the

reservoir where an increased capillary forced is

experienced, a stiffening of the interfacial bounda-

ries between gas and liquid condensate may

increase the general dynamic pressure drop.

3. The ratio of viscous to gravitational force, as seen

in Fig. 11, shows that the likelihood of condensate

segregation is greatest in the remote area of the
reservoir, furthest away from the wellbore. As

generally pore velocity and condensate viscosity

are increasing as pressure is decreasing, the

importance of condensate segregation, if present

at all, is more pronounced at early times of liquid–

gas condensation, and at a relatively high average

reservoir pressure.

4. In the comparison between the capillary and the

gravitational force, see Fig. 12, the increase

observed is mainly due to the increase in interfacial

tension, slightly dampened by the effect of margin-

ally increasing density difference between con-

densate and gas.

Fig. 16 is an illustration of some of the points

mentioned above. The various forces are characterized

by their likelihood of being the dominating force in

comparison to the other. The figure gives a very

general representation of the ratios of forces as func-

tion of radial dimension and reservoir pressure.
4. Effective gas permeability

The formation of liquid condensate will reduce the

reservoir effective gas permeability, since the liquid

will occupy parts of the volume in the porous media

that previously were used for gas flow (Pope et al.,

1998). The presence of liquid condensate can reduce

the flow of gas through sections of the reservoir or in

the worst case totally block the gas transport through

certain pores, leading to general rearranging of gas

flow patterns in the reservoir (Coskuner, 1997). The

presence of liquid condensate will eventually also lead

to two-phase flow behavior and reduced gas perme-

ability at condensate saturations higher than the crit-

ical condensate saturation Scc (Ali et al., 1997). The

definition of Scc is normally associated to a saturation

level at which the condensate becomes continuous

and starts to flow. In gas condensate reservoirs, this

saturation can vary considerably from a few percent

up to, i.e., 50%, all depending on the porous medium,

wettability strengths and the fluid characteristics.

Fig. 17 shows the condensate saturation defined

through a constant volume depletion experiment

(CVD), based on the reservoir fluid presented in Table

1. The saturation is given in % and shows a maximum

condensate saturation of 3.87% at 135 bar. The actual



Fig. 18. Cumulative condensate saturation as function of radial

dimension.

Fig. 17. Condensate saturation in %, defined as part of a constant

volume depletion (CVD) experiment, where the the saturation is

defined: SC = Liquid volume/Dew point volume.

J.-R. Ursin / Journal of Petroleum Science and Engineering 41 (2004) 253–267 263
condensate saturation in the reservoir S(r,t), on the

other hand, is presently not at hand as an analytical

model. Even though the maximum condensate satu-

ration is rather low, as in Fig. 17, the cumulative

saturation close to the wellbore may eventually be-

come larger than the critical saturation, i.e. S(r,t)>Scc.

Fig. 18 depicts the cumulative condensate saturation

as function of radial dimension. When the saturation

exceeds the critical saturation, liquid condensate may

flow towards the wellbore, reducing the saturation

back to the critical level.

4.1. Space and time relations

In the case of natural gas depletion, the pressure is

reduced differently in different parts of the reservoir

as time goes on. Similarly is the formation of liquid

condensate in the reservoir expected to be a function

of both space and time, as mentioned above. Fig. 19 is

an illustration of the process of liquid formation as

function of fluid phase behavior and radial reservoir

pressure. The two-phase region, as shown in the

figure, is a cylindrical region progressing radially in

to the reservoir.

The formation of condensate may form lenses of

liquid, bridging the whole pore volume. Alternatively,

the liquid may spread as a thin film over the mineral

surface or over the connate water if water is the

preferred wetting fluid. The liquid could in other

cases reside in the porous medium as monolayers of

various extension (Coskuner, 1999).

When the pressure drops below the dew point

pressure, the initial formation of liquid condensate is
expected to form in those cavities where the local

pressure is lowest (Firoozabadi, 1999). The local

variation of the pressure in a single pore will depend

on the wetting preferences and consequently on the

capillary pressure difference. In a porous medium

where the liquid condensate is the preferred phase,

the first condensation will take place in the narrowest

parts of the pore. As the condensation process pro-

gresses, the liquid phase is gradually expanding from

this point. Finally, droplets of liquid are formed and

depending on the relative strength of capillary and

gravitational forces, the droplet may start to move

freely in the gas or alternatively, in the presence of

relative strong gravitational forces, move to the lower

side of the mineral grain (Coskuner, 1999).

The formation of liquid condensate in the reservoir

happens first in the close vicinity of the wellbore,

under the influence of relatively strong viscous forces.

The ratios of viscous forces to capillary or gravita-

tionally forces, as depicted in Figs. 10 and 11, show

that liquid formed in this part of the reservoir is

subjected to strong shear forces and would most

probably be immediately transported to the wellbore

(Henderson et al., 1996). The effective gas permeabil-

ity may therefore only be slightly reduced in this part

of the reservoir.

In contrast to this situation, when the pressure in

the reservoir is reduced to such an extent that the

formation of liquid condensate can also take place in

the outer part of the reservoir, the ratio of forces will

be quite different. At relatively low viscous forces, the

ratio of capillary and gravitational forces, as shown in

Fig. 12, is characterizing the competition between the

forces. Early in the production period, at relatively



Fig. 19. Formation of liquid condensate related to fluid phase and reservoir pressure draw-down.
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high reservoir pressures ( p < pdew) the gravity force

may be dominating. Under these conditions, the liquid

may appear as pendant droplets, only partly restricting

the porous gas flow. As the pressure is reduced, the

relative strength of capillary force is increased, pro-

portional to the increase in the interfacial tension. As a

result of this increase, a stiffening of the liquid

interface and thus an increased hindrance of gas flow

is experienced (Singh et al., 2001). In the absence of

viscous forces, but at the same level of condensate

saturation, the effective gas permeability would vary

depending on the fluid pressure. This observation

supports the assumption that the relative gas perme-

ability, traditionally presented as a function of satura-

tion alone, also is dependent on the absolute pressure

level, i.e., krg = krg(Sg,p).

The amount of liquid condensate present in the

porous system, defined by the condensate saturation,

is obviously a very important factor in the assessment

of effective gas permeability (Bourbiaux, 1994). As

the saturation of gas condensate increases above what

is commonly known as the critical saturation, two-

phase flow will take place in the reservoir and the

effective gas permeability is reduced accordingly. In

the presence of strong viscous forces, the critical

saturation would most likely be lower than in those

parts of the reservoir where viscous flow is low. From
this, we may conclude that the endpoint relative

permeability of liquid condensate will vary with the

gas flow rate and thus that the relative gas permeabil-

ity is rate dependent, i.e., krg = krg(Sg,p,qg).

The dynamical situation of gas flowing towards the

wellbore, at decreasing reservoir pressure, will even-

tually cause the drop out of condensate in all parts of

the reservoir (as in this example). The saturation of

liquid condensate as seen radially from the outer

boundary of the reservoir (re) towards the wellbore

will be a monotonically increasing function up to a

level of the critical condensate saturation where the

liquid starts to flow. Closer to the wellbore, the

viscous force will reduce the liquid saturation due to

increased effect of shear forces (Kalaydjian et al.,

1996). See also Fig. 18.

4.2. Reduced gas permeability

The effect of liquid dropout in the reservoir during

normal production will undoubtedly lead to reduced

gas permeability. The question is how much, where

and when?

The general behavior of the reservoir gas perme-

ability in space and time will follow a functional form

determined by the local gas saturation, where kg(Sg) is

some increasing function. The point here is not to
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discuss the functional dependence of gas saturation,

but more to give an interpretation, based on the

previous discussion, of the effect of fundamental

forces and their representation as dimensionless

numbers. In particular, it has been shown that due to

viscous forces, there is a rate dependency, which

increases the gas permeability near the well more at

low absolute pressures than at high pressure. Similar-

ly, the interfacial tension will reduce gas permeability,

less near the well than further away, when the absolute

pressure decreases.

Based on calculations of dimensionless numbers as

seen above and the elaborations presented in the

previous section, we may draw a model representing

an imaginable picture of how we believe the gas

permeability will change in time and space. Fig. 20

represents such a model, where gas permeability is

normalized to one in the case of one-phase gas flow,

i.e., depicting relative gas permeability.

Early in the production period, when the pressure

is above the dew point pressure, no liquid condensa-

tion has jet occurred and the relative gas permeability

is equal to one in all parts of the reservoir. The first

droplets of liquid are observed in the close vicinity of

the wellbore, leading to a moderation in gas perme-

ability. Further away from the well, gas permeability

is unchanged. Above a certain critical liquid satura-
Fig. 20. Relative gas permeability as function of space and time.
tion, condensate is produced into the well. As the

bottom hole pressure continuously decreases, a radial

pressure region, p < pdew, expands in to the reservoir

and reaches after a relatively short time (in this

example) the outer boundary, re. After this time liquid

condensate is produced in all parts of the reservoir,

and the saturation of condensate is increasing towards

the wellbore. Gas permeability is reduced as the

saturation of liquid condensate is increased.

This picture will gradually change as the bottom

hole pressure is continuously decreased and the vis-

cous forces increases. At this time, the shear forces

will become more important and gas saturation close

to the well will decrease. The mid-section of the

reservoir will experience an increased liquid satura-

tion both due to continued condensation but also due

to flow of condensate into the region. These changes

in liquid saturation will lead to an increased gas

permeability close to the well and a reduced gas

permeability in the mid-section of the reservoir. At

the outer part of the reservoir, gas permeability is

higher than in the mid-section due to low liquid

saturation and relatively week viscous forces.

The extended reach of the viscous-dominated re-

gion and the fact that liquid condensation will reach

an over all maximum per pressure leads to a general

increase in gas permeability. This increase is more

pronounced close to the wellbore and in the outer part

of the reservoir than in the mid-section, where the

liquid saturation is the highest.
5. Conclusions

A complete set of dimensionless numbers reflect-

ing the ratios of fundamental forces such as; the

capillary, the viscous, the gravitational and the inertial

force, has been defined. These numbers are functional

dependent on seven independent variables describing

fluid, flow and reservoir characteristics.

Based on fluid data from a gas condensate field,

applied to a cylindrical test reservoir under somewhat

idealized conditions, the various dimensionless numb-

ers have been given a numerical representation. The

various numbers constitute a surface spanned by

radial dimension and reservoir pressure. The numbers,

representing the ratios of fundamental forces, demon-

strates a relative dynamical range from 10 to 108.



J.-R. Ursin / Journal of Petroleum Science and Engineering 41 (2004) 253–267266
Under the assumption of constant dry gas pro-

duction, the rather complex process of reservoir

fluid behavior, involving liquid dropout in the

reservoir and as a consequence, varying gas perme-

ability, has been evaluated in the light of the

dimensionless numbers. The relative gas permeabil-

ity has been estimated, based on the effect dimen-

sionless numbers and the physical conception of

increasing condensate saturation in the reservoir. It

has been established that the relative gas permeabil-

ity in the reservoir is not only dependent of the

local saturation, but also on flow rate and absolute

pressure.

Nomenclature

L length of cylindrical pore channel

R radius of cylindrical pore channel

h wetting angle

tg pore flow velocity

DPg pressure drop in gas region

DPo pressure drop in liquid condensate

DPV total viscous pressure drop

lg gas viscosity

lo liquid condensate viscosity

PC capillary pressure drop

rgo interfacial tension (gas–liquid)

p general pressure

pdew dew point pressure

Rd spherical droplet radius

g gravitational constant

DpG gravitational pressure difference

qg gas density

qo liquid condensate density

Dqgo density difference

k absolute permeability

Rr radius of circular flow path

DFI Inertial force

A cross-section of flow path

DPI inertial pressure difference

DL line segment

N(C/V) ratio of capillary and viscous forces

N(C/G) ratio of capillary and gravitational forces

N(V/G) ratio of viscous and gravitational forces

N(V/I) ratio of viscous and inertial forces

N(C/I) ratio of capillary and inertial forces

N(G/I) ratio of gravity and inertial forces

Bg gas volume factor

qg,res reservoir volume rate
qg,sc surface volume rate

tg,bulk reservoir gas flow rate

tg,pors pore gas rate

rw well radius

re well radial boundary

/ reservoir porosity

Swc connate water saturation

Sg gas saturation

a tortuosity angle

Z gas compressibility factor

Tres reservoir temperature

Tsc surface temperature

RMLG surface molar liquid gas ratio

Scc critical condensate saturation

S(r,t) reservoir saturation

krg relative gas permeability
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