

Fig. 3.25—K values at 120° F for binary- and reservoir-fluid systems with convergence pressures ranging from 800 to 10,000 psia (from Standing³).

K values tend toward unity as pressure approaches the convergence pressure, p_K , it is necessary that $A_0 = \log(p_K)$ and $A_1 \rightarrow 0$. Several authors have noted that plots of $\log(K_ip)$ vs. F_i tend to converge at a common point. Brinkman and Sicking¹⁰¹ suggest that this "pivot" point represents the convergence pressure where $K_i = 1$ and $p = p_K$. The value of F_i at the pivot point, F_K , is easily shown to equal $\log(p_K/p_{sc})$.

It is interesting to note that the well-known Wilson^{102,103} equation,

$$K_{i} = \frac{\exp 5.37(1 + \omega_{i})(1 - T_{ri}^{-1})}{p_{ri}}, \quad \dots \quad (3.157)$$

is identical to the Hoffman *et al.*⁹⁹ relation for $A_0 = \log(p_{sc})$ and $A_1 = 1$ when the Edmister¹⁰⁴ correlation for acentric factor equation,

$$\omega_i = \frac{3}{7} \frac{T_{bi}/T_{ci}}{1 - T_{bi}/T_{ci}} \log(p_{ci}/p_{sc}) - 1, \quad \dots \dots \dots \quad (3.158)$$

is used in the Wilson equation. Note that $5.37 = (7/3) \ln(10)$.

Whitson and Torp¹⁰⁰ suggest a generalized form of the Hoffman *et al.*⁹⁹ equation in terms of convergence pressure and acentric factor.

$$K_{i} = \left(\frac{p_{ci}}{p_{K}}\right)^{A_{1}-1} \frac{\exp\left[5.37A_{1}\left(1+\omega_{i}\right)\left(1-T_{ri}^{-1}\right)\right]}{p_{ri}},$$
.....(3.159)

where $A_1 = a$ function of pressure, with $A_1 = 1$ at $p = p_{sc}$ and $A_1 = 0$ at $p = p_K$. The key characteristics of K values vs. pressure

PHASE BEHAVIOR