Reservoir Fluid Study

DIAMOND SHAMROCK CORPORATION
Ackerman State 41-16 Well
Wildcat
Converse County, Wyoming
RFL 80925

Reservoir Fluid Analysis

April 3, 1981

CORE LABORATORIES, INC.

Diamond Shamrock Corporation Suite 600 410 17th Street Denver, CO 80202 P. L. Moses Manager Reservoir Fluid Analysis

Attention: Mr. John Richardson

Subject: Reservoir Fluid Study

Ackerman State 41-16 Well

Wildcat

Converse County, Wyoming

RFL 80925

Gentlemen:

Samples of first stage separator gas and liquid were collected from the subject well by Core Laboratories, Inc. personnel on December 4, 1980. A reservoir fluid study has been performed in our laboratory in Dallas using these samples, and the results of the study are presented in this report.

At the time of sampling, the well was producing at a stable gas-liquid ratio of 1745 standard cubic feet of first stage separator gas per barrel of stock tank liquid. In the laboratory, this was experimentally determined to be equivalent to 1667 standard cubic feet of gas per barrel of separator liquid at the separator conditions. The separator products were physically recombined in these proportions, and the resulting mixture was used in the entire study.

The separator liquid composition was measured by low temperature fractional distillation and the separator gas composition was measured by routine chromatography. The analysis of the separator liquid was extended to undecanes plus by analyzing the heptanes plus fraction with a high temperature chromatograph. The well stream composition was calculated from the gas and liquid compositions on the basis of the producing gas-liquid ratio.

The recombined fluid sample was charged to a visual cell at the reservoir temperature of 248°F. The bubble point pressure of the fluid was 3840 psig at this temperature. The pressure-volume relations of the fluid were measured over a wide range of pressures up to 8000 psig. During this test, the liquid shrinkage was very high immediately below the bubble point pressure, indicating that the fluid was fairly volatile. This information was discussed with you, and it was decided that a volatile oil depletion study should be performed.

A large sample of the recombined fluid was charged to a high pressure cell and the volume at the bubble point was measured. The fluid was then subjected to constant-volume depletion at the reservoir temperature. This depletion consisted of a series of expansions and constant-pressure displacements of the equilibrium gas phase. Each displacement was terminated when the total sample volume equaled the original volume at the bubble point. The gases displaced from the cell were charged directly to low temperature fractional distillation equipment, and the gas compositions and volumes were measured. The condensable liquid contents of the gases were then calculated from the gas compositions, and the cumulative "plant products" in the well stream were calculated.

The liquid phase volume was measured visually at each depletion level. At atmospheric pressure, the volume of the liquid phase in the cell was 40.8 percent of the original saturated volume.

The viscosity of the liquid phase was measured during a similar depletion. The viscosity increased from 0.126 centipoise at the bubble point to 0.896 centipoise at one atmosphere. The gas phase viscosities were calculated from the compositions using the Carr, Kobayashi, and Burrows correlation.

Three separator tests were performed at specified separator pressures and temperatures. First stage separator gas from one test and first and second stage gases from a multi-stage test were collected and analyzed.

It was a pleasure to perform this study for you and we hope we may be of further service in the near future. Please do not hesitate to call on us if you have any questions or comments concerning the data.

Very truly yours,

CORE LABORATORIES, INC.

James R. Fortner Assistant Manager

Reservoir Fluid Analysis

James R. Fortun

JRF:JB:bt

7 cc: Addressee

Reservoir Fluid Analysis

				Page	1	of	18
				File	RFL	80925	
Company	Diamond Shamrock Corporat	tion Da	te Sa	mpled	Decembe	r 4, 19	80
We11	Ackerman State 41-16	Co	unty_		Convers	e	
Field	Wildcat	St.	ate		Wyoming		
	FOI	RMATION	CHARA	CTERISTICS	3		Section Sec. Strike to the second
Formation				-	rontier		
	t Well Completed			Novembe			, 1980
	Reservoir Pressure			7934	PSIG	<u> 1250</u>	
	Produced Gas-Liquid Ratio			1709			SCF/Bbl
	ction Rate			179			Bbls/Day
	ator Pressure and Temperat	ure		44	PSIG		°F.
	d Gravity at 60°F.			45			API
Datum							Ft. Subsea
		METT CH	ARACT.	ERISTICS	v n		
Elevation	. 1			5317 KI	3		Ft.
Total Dep				13230	0050		Ft.
Producing				12744-1	1800, 1800, 1800, 1800	2003	Ft.
	ze and Depth			2-7/8	In. to	1231	
	Potential				2070	3	MMSCF/Day
	rvoir Pressure				PSIG (<u> </u>	Ft.
Date				2/04	°F. @	1005	, 19
	voir Temperature			240*	°F. @_	1225	O Ft.
	s of Well			7			
Press	ure Gauge	CANDI TN	0.001	NYMTONG			
13.7 m	The second second	SAMPLING	G CON				DOTO
	ubing Pressure			200			PSIG
	ottom Hole Pressure			- 60			PSIG
	eparator Pressure			68			PSIG °F.
	eparator Temperature			55			
	Separator Pressure			41			PSIG °F.
	Separator Temperature			110		0.4	
	ck Tank Liquid Gravity					A	PI @ 60°F.
	eparator Gas Production Ra			PSIA			MSCF/Day
	ure Base	15.025		°F.			
	rature Base	1.0000		F.			
	essibility Factor (F _{pv})	0.828					
	ravity (Laboratory)						
	ravity Factor (Fg)	0.8513	·	110			Bbls/Day
Stock Tan				110 1745			SCF/Bbl
riimary 5	eparator Gas/Stock Tank Li	1000 Janes 1	CTO	1/47			Bbls/MMSCF
Campled L	17	or		Comp T	borotor	0.000	
Sampled by	у			COTE LE	borator	res, in	C.

REMARKS:

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used reflect upon,

^{*}Temperature extrapolated to 248°F. at 12798 ft. (mpp)

Reservoir Fluid Analysis

Page	of18	
File_	RFL 80925	
We11_	Ackerman State 41-16	

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS AND CALCULATED WELL STREAM

Component	Separator Liquid, Mol Percent	Separator Mol Percent	Gas GPM	Well Stream, Mol Percent
Hydrogen Sulfide	0.00	0.00		0.00
Carbon Dioxide	0.13	1.58		1.15
Nitrogen	0.01	0.64		0.45
Methane	1.90	67.09		47.81
Ethane	3.30	15.61	4.256	11.97
Propane	7.58	9.95	2.792	9.25
iso-Butane	2.14	1.25	0.417	1.51
n-Butane	6.11	2.45	0.788	3.53
iso-Pentane	3.09	0.57	0.213	1.32
n-Pentane	3.29	0.45	0.166	1.29
Hexanes	6.82	0.22	0.092	2.17
Heptanes plus	65.63	0.19	0.088	19.55
The second seco	100.00	100.00	8.812	100.00

Properties of Heptanes pl	us		
API gravity @ 60°F.	38.7		
Density, Gm/Cc @ 60°F.	0.8311		0.831
Molecular weight	193	102	193

Calculated separator gas gravity (air=1.000) = 0.828
Calculated gross heating value for separator gas = 1417 BTU
per cubic foot of dry gas @ 15.025 psia and 60°F.

Primary separator gas collected @ 68 psig and 55 °F. Primary separator liquid collected @ 68 psig and 55 °F.

Primary separator gas/separator liquid ratio Primary separator liquid/stock tank liquid ratio Primary separator gas/well stream ratio

1667	SCF/Bbl @ 55°F.
1.047	Bbls @ 55°F./Bbl
704.20	MSCF/MMSCF

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used reited upon.

Reservoir Fluid Analysis

Page	3	o:	E	L8
File	RFL	8092	5	
-Well	Acke	rman	State	41-16

HYDROCARBON ANALYSIS OF HEPTANES PLUS FRACTION OF SEPARATOR LIQUID

Component	Mol Percent	Weight Percent
Methylcyclopentane	0.16	0.07
Benzene	0.02	0.01
Cyclohexane	2.71	1.22
Heptanes	8.63	4.63
Methylcyclohexane	7.00	3.67
Toluene	1.26	0.63
Octanes	10.58	6.46
Ethylbenzene	0.57	0.32
Meta & Para Xylenes	2.40	1.36
Orthoxylene	0.72	0.41
Nonanes	7.91	5.43
1,2,4 Trimethylbenzene	1.70	1.09
Decanes	7.09	5.40
Undecanes plus	49.25	69.30
-	100.00	100.00

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page_	4	of_	18	
File_	RFL	8092	5	
Well	Ack	erman	State	41-16

 $PSIG = 25.06 \times 10^{-6}$

 $PSIG = 34.44 \times 10^{-6}$

VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

PSIG @ 248 °F. Saturation pressure (bubble-point pressure) 3840 Specific volume at saturation pressure: ft 3/1b 0.03112 248 °F. V @ Thermal expansion of saturated oil @ 5000 PSIG = 1.17122 3. V @ Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI: PSIG to 7000 8000 $PSIG = 16.74 \times 10^{-6}$ From 7000 $PSIG = 20.14 \times 10^{-6}$ 6000 From PSIG to

PSIG to

PSIG to

5000

3840

6000

5000

From

From

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page_	5	of	18	3	•
File_	RFL	8092	5		•
Well	Acke	erman	State	41-16	

PRESSURE-VOLUME RELATIONS AT 248°F.

Relative Volume(1)	Density, Gm/Cc
0.0018	0.5711
	0.5665
	0.5616
	0.5560
	0.5502
0.9477	0.5434
0.9600	0.5365
0.9752	0.5281
0.9931	0.5186
1.0000	0.5150
1.0021	
1.0041	
1.0089	
1.0196	
1.0398	
1.1238	
1.2587	
1.4935	
1.9258	
2	
The state of the s	
	Volume(1) 0.9018 0.9091 0.9171 0.9262 0.9360 0.9477 0.9600 0.9752 0.9931 1.0000 1.0021 1.0041 1.0089 1.0196 1.0398 1.1238 1.2587 1.4935

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

⁽¹⁾ Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

CORE LABO TORIES, INC. Reservoir Fluid Analysis

Page	6	of	18	
File_	RFL	80925		

Ackerman State 41-16

Well

DEPLETION STUDY AT 248°F.

Undergraphen Applying of Produced Gas Phase - Mol Percent

Hydrocarbon Analyses of Produced	Gas Phase -	Mol Percent					
			Reservoir P	ressure - PSIG			
	3840*	3300	2600	1900	1200	700	700**
Component							
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carbon Dioxide	1.15	1.40	1.43	1.48	1.51	1.57	0.41
Nitrogen	0.45	0.76	0.73	0.69	0.62	0.53	0.04
Methane	47.81	65.17	67.70	68.49	66.73	61.80	9.47
Ethane	11.97	12.64	12.85	13.30	14.36	16.13	6.98
Propane	9.25	8.52	8.30	8.36	9.20	10.92	9.03
iso-Butane	1.51	1.33	1.24	1.23	1.32	1.59	1.80
n-Butane	3.53	2.64	2.45	2.38	2.59	3.16	5.30
iso-Pentane	1.32	0.92	0.76	0.67	0.70	0.87	2.50
n-Pentane	1.29	0.88	0.72	0.63	0.66	0.83	2.49
Hexanes	2.17	1.18	0.87	0.69	0.63	0.74	5.19
Heptanes plus	19.55	4.56	2.95	2.08	1.68	1.86	56.79
	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Molecular weight of heptanes plus		119	114	109	106	106	200
Density of heptanes plus	0.831	0.770	0.765	0.760	0.757	0.757	0.838
Deviation Factor - Z							
Equilibrium gas		0.840	0.829	0.846	0.887	0.925	
Gas Phase produced-		14					
Cumulative percent of initial	0.000	6.494	17.784	31.680	47.305	59.417	
GPM							
Ethane plus		10.570	9.369	8.884	9.300	10.792	
Propane plus		7.123	5.865	5.257	5.384	6.394	
Butanes plus		4.732	3.535	2.911	2.802	3.329	
Pentanes plus		3.440	2.334	1.736	1.529	1.783	
.014							

^{*}Reservoir Fluid

**Equilibrium liquid phase

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted), but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page	of	1	8
File	RFL 8092	.5	
Well	Ackerman	State	41-16

CALCULATED CUMULATIVE RECOVERY DURING DEPLETION (Per MMSCF of Original Fluid)

Pressure,	Gas Phase,	P1	ant Products	in Gas Phase,	Gallons
PSIG	MSCF	Ethane	Propane	Butanes	Pentanes plus
3840	0.00	0	0	0	0
3300	64.94	224	155	84	223
2600	177.84	619	418	220	487
1900	316.80	1123	744	383	728
1200	473.05	1735	1148	582	967
700	594.17	2268	1519	769	1183

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page	8	of_	18	3
File	RFL	8092	5	
Well	Acke	erman	State	41-16

VOLUME OF LIQUID PHASE AT 248°F.

Pressure,		Liquid Phase Volume,
PSIG		Percent of Saturated Volume
2040 Ph	ble Point	100.0
	pre Lorur	95.9
3800		
3755		92.7
3660		89.0
3500		82.7
3300 Fire	st Depletion	Level 79.9
2600	•	71.0
1900		64.0
1200		58.4
700		54.4
0		40.8

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page	9	_of_	1	<u>B</u>
File_	RFL	8092	5	
Well	Ack	erman	State	41-16

VISCOSITY AT 248°F.

Pressure, PSIG	Viscosity, Liquid	Centipoises Gas*	Liquid/Gas Viscosity Ratio
8000	0.198		
7000	0.181		
6000	0.164		
5500	0.157		
5000	0.148		
4500	0.138		
4200	0.133		
3840	0.126		
3600	0.140		
3300	0.157	0.0230	6.83
3000	0.177		
2600	0.208	0.0204	10.19
2200	0.240		
1900	0.271	0.0170	15.94
1600	0.306		
1200	0.364	0.0149	24.43
700	0.460	0.0133	34.59
0	0.896		

*Gas viscosity data calculated from gas gravity and using method of Carr, Kobayashi, and Burrows: Petroleum Transactions AIME, Vol. 201: p. 267 (1954).

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc., (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page	10 of 18	
File_	RFL 80925	•
Well	Ackerman State 41-16	

SEPARATOR TESTS OF RESERVOIR FLUID SAMPLE

Separator Pressure, PSIG	Temp.,	Gas/0il Ratio (1)	Gas/Oil Ratio (2)	Tank Oil Gravity, °API @ 60°F.	Formation Volume Factor(3)	Separator Volume Factor(4)	Gas Gravity
50	70	1779	1877			1.055	0.805*
to							
0	70	72	$\frac{73}{1950}$	45.8	2.236	1.005	1.158
200	70	1419	1629			1.148	0.761
to							
0	70	237	239 1868	46.7	2.197	1.005	1.339
200	70	1444	1644			1.138	0.756*
to						2	
50	70	72	79			1.099	0.926*
to							
0	70	139	139 1862	46.8	2.194	1.006	1.258

*Gases collected and analyzed in the laboratory.

- (1) Gas/Oil Ratio in cubic feet of gas at 15.025 psia and 60°F. per barrel of oil at indicated pressure and temperature.
- (2) Gas/Oil Ratio in cubic feet of gas at 15.025 psia and 60°F. per barrel of stock tank oil at 60°F.
- (3) Formation Volume Factor is barrels of saturated oil at 3840 psig and 248°F. per barrel of stock tank oil at 60°F.
- (4) Separator Volume Factor is barrels of oil at indicated pressure and temperature per barrel of stock tank oil at 60°F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page_	_11	of	18	3
File_	RFL	8092	5	
Well	Ack	erman	State	41-16

HYDROCARBON ANALYSIS OF FIRST STAGE SEPARATOR GAS SAMPLE

Mol Percent		GPM
0.00		
1.60		
0.68		
68.36		
15.68		4.169
9.66		2.643
1.12		0.364
2.07		0.649
0.41		0.149
0.32		0.115
0.08		0.033
0.02		0.009
100.00		8.131
	0.00 1.60 0.68 68.36 15.68 9.66 1.12 2.07 0.41 0.32 0.08	0.00 1.60 0.68 68.36 15.68 9.66 1.12 2.07 0.41 0.32 0.08 0.02

Calculated gas gravity (air = 1.000) = 0.805

Calculated gross heating value = 1345 BTU per cubic foot of dry gas at 15.025 psia and 60°F.

Collected at 50 psig and 70°F. from two-stage test.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential uso, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon.

Reservoir Fluid Analysis

Page_	12	of	18	3	-
File_	RFL	8092	5		_
Well	Acke	erman	State	41-16	

HYDROCARBON ANALYSIS OF FIRST STAGE GAS SAMPLE

Component	Mol Percent	GPM
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane iso-Butane n-Butane iso-Pentane n-Pentane Hexanes	0.00 1.62 0.73 73.00 14.73 7.39 0.72 1.26 0.22 0.17 0.07	4.017 2.074 0.240 0.405 0.082 0.063 0.029
Heptanes plus	$\frac{0.09}{100.00}$	0.042 6.952

Calculated gas gravity (air = 1.000) = 0.756

Calculated gross heating value = 1301 BTU per cubic foot of dry gas at 15.025 psia and 60° F.

Collected at 200 psig and 70°F. from three-stage test.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc., and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oit, gas or other mineral well or in connection with which such report is used relied upon.

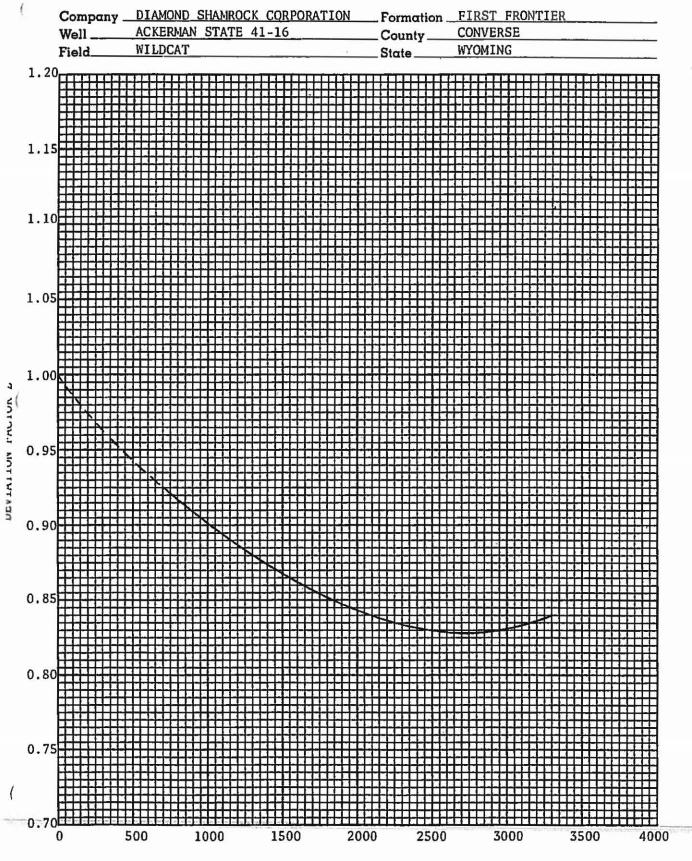
Reservoir Fluid Analysis

Page	13of	18
File_	RFL 8092	5
-Well	Ackerman	State 41-16

HYDROCARBON ANALYSIS OF SECOND STAGE SEPARATOR GAS SAMPLE

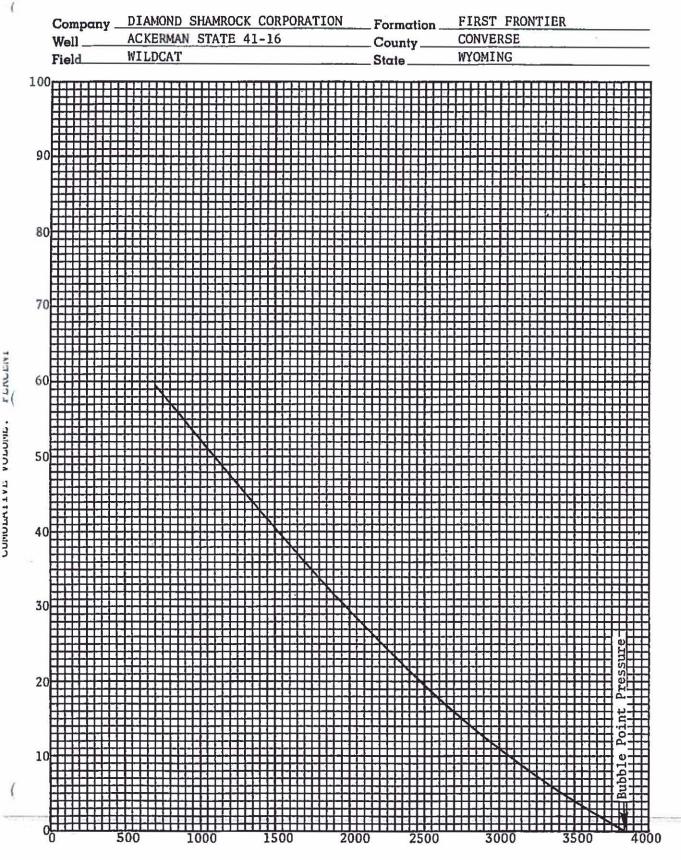
Component	Mol Percent	<u>GPM</u>
Hydrogen Sulfide	0.00	
Carbon Dioxide	1.90	
Nitrogen	0.68	
Methane	50.15	
Ethane	27.06	7.380
Propane	15.35	4.307
iso-Butane	1.49	0.497
n-Butane	2.46	0.791
iso-Pentane	0.43	0.161
n-Pentane	0.31	0.115
Hexanes	0.13	0.054
Heptanes plus	0.04	0.019
• • • • • • • • • • • • • • • • • • • •	100.00	13.324

Calculated gas gravity (air = 1.000) = 0.926

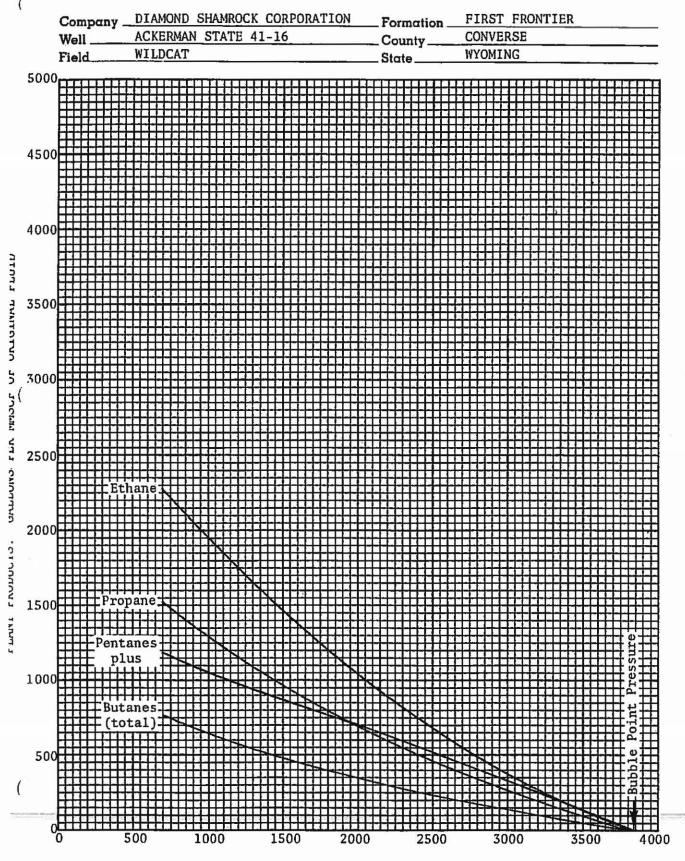

Calculated gross heating value = 1574 BTU per cubic foot of dry gas at 15.025 psia and 60°F.

Collected at 50 psig and 70°F. from three-stage test.

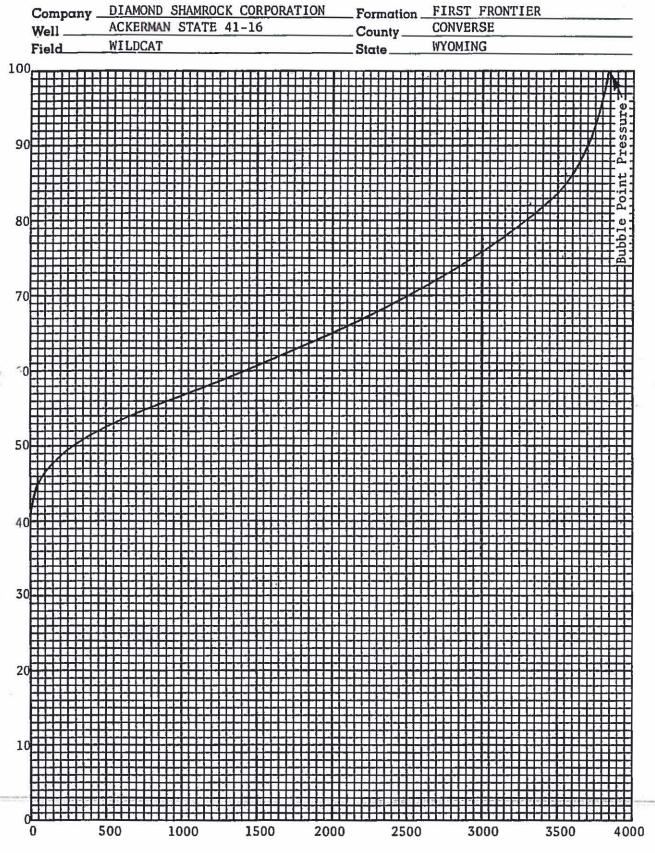
These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential ise, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or in connection with which such report is used relied upon,


Page <u>14 of 18</u> File <u>RFL</u> 80925

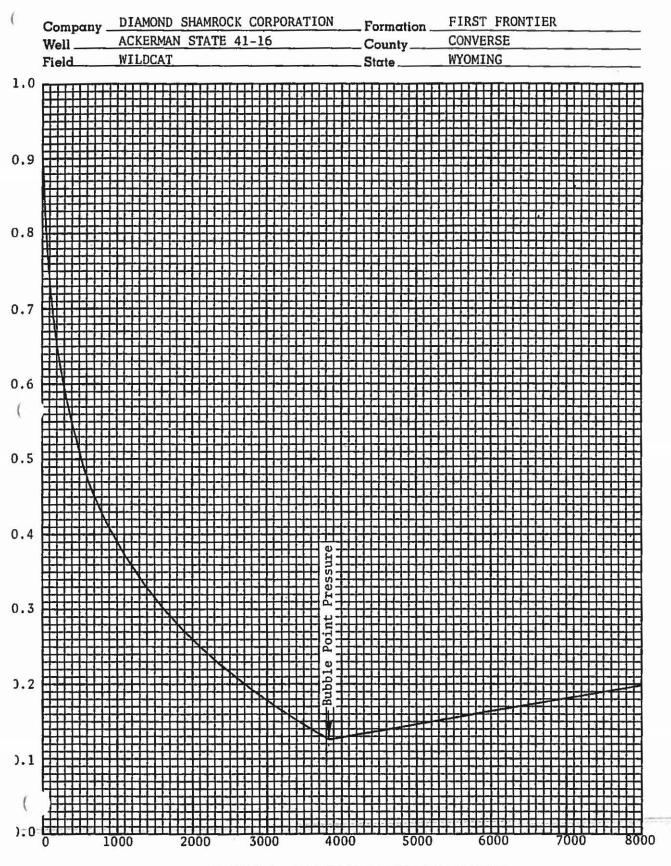
DEVIATION FACTOR Z OF GAS PHASE DURING DEPLETION AT 248°F.


Page 15 of 18 File RFL 80925

VOLUME OF GAS PHASE PRODUCED DURING DEPLETION AT 248°F.


Page 16 of 18 File RFL 80925

CUMULATIVE RECOVERY - PLANT PRODUCTS IN GAS PHASE


Page 17 of 18 File RFL 80925

VOLUME OF LIQUID PHASE AT 248°F.

Page 18 of 18 File RFL 80925

VISCOSITY AT 248°F.

