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ABSTRACT

The effect of variations of pressure-dependent viscosity
and gas law deviation factor on the flow of real gases
through porous media has been considered. A rigorous
gas flow equation was developed which is a second order,
non-linear partial differential equation with variable co-
efficients. This equation was reduced by a change of vari-
able to a form similar 1o the diffusivity equation, but
with potential-dependent diffusivity. The change of vari-
able can be used as a new pseudo-pressure for gas flow
which replaces pressure or pressure-squared as currently
applied to gas flow.

Substitution of the real gas pseudo-pressure has a
number of important consequences. First, second degree
pressure gradient terms which have commonly been ne-
glected under the assumption that the pressure gradient
is small everywhere in the flow system, are rigorously
handled. Omission of second degree terms leads to ser-
ious errors in estimated pressure distributions for tight
formations. Second, flow equations in terms of the real
gas pseudo-pressure do not contain viscosity or gas law
deviation factors, and thus avoid the need for selection of
an average pressure to evaluate physical properties. Third,
the real gas pseudo-pressure can be determined numerically
in terms of pseudo-reduced pressures and temperatures
from existing physical property correlations to provide
generally useful information. The real gas pseudo-pressure
was determined by numerical integration and is presented
in both tabular and graphical form in this paper. Finally,
production of real gas can be correlated in terms of the
real gas pseudo-pressure and shown to be similar to
liguid flow as described by diffusivity equation solutions.

Applications of the real gas pseudo-pressure to radial
flow systems under transient, steady-state or approximate
pseudo-steady-state injection or production have been con-
sidered. Superposition of the linearized real gas flow
solutions to generate variable rate performance was
investigated and found satisfactory. This provides justi-
fication for pressure build-up testing. It is believed that the
concept of the real gas pseudo-pressure will lead to im-
proved interpretation of results of current gas well testing
procedures, both steady and unsteady-state in nature, and
improved forecasting of gas production.

INTRODUCTION

In recent years a considerable effort has been directed
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to the theory of isothermal flow of gases through porous
media. The present state of knowledge is far from being
fully developed. The difficulty lies in the non-linearity
of partial differential equations which describe both real
and ideal gas flow. Solutions which are available are
approximate analytical solutions, graphical solutions, ana-
logue solutions and numerical solutions.

The earliest attempt to solve this problem involved
the method of successions of steady states proposed by
Muskat.! Approximate analytical solutions® were obtained
by linearizing the flow equation for ideal gas to yield
a diffusivity-type equation. Such solutions, though widely
used and easy to apply to engineering problems, are of
limited value because of idealized assumptions and restric-
tions imposed upon the flow equation. The validity of lin-
earized equations and the conditions under which their
solutions apply have not been fully discussed in the literature.
Approximate solutions are those of Heatherington er al.
MacRoberts' and Janicek and Katz.® A graphical solution
of the linearized equation was given by Cornell and
Katz.® Also, by using the mean value of the time de-
rivative in the flow equation, Rowan and Clegg’ gave
several simple approximate solutions. All the solutions
were obtained assuming small pressure gradients and
constant gas properties. Variation of gas properties with
pressure has been neglected because of analytic difficulties,
even in approximate analytic solutions.

Green and Wilts® used an electrical network for sim-
ulating one-dimensional flow of an ideal gas. Numerical
methods using finite difference equations and digital com-
puting techniques have been used extensively for solving
both ideal and real gas equations. Aronofsky and Jenkins” *
and Bruce et al" gave numerical solutions for linear
and radial gas flow. Douglas et al.” gave a solution for
a square drainage area. Aronofsky™ included the effect
of slippage on ideal gas flow. The most important contri-
bution to the theory of flow of ideal gases through porous
media was the conclusion reached by Aronofsky and
Jenkins™ that solutions for the liquid flow case® could
be used to generate approximate solutions for constant
rate production of ideal gases.

An equation describing the flow of real gases has been
solved for special cases by a number of investigators using
numerical methods. Aronofsky and Ferris® considered
linear flow, while Aronofsky and Porter” considered
radial gas flow. Gas properties were permitted to vary as
linear functions of pressure. Recently, Carter® proposed
an empirical correlation by which gas well behavior can
be estimated from solutions of the diffusivity equation
using instantaneous values of pressure-dependent gas

‘References given at end of paper.



properties evaluated at an average pressure also defined
empirically. Carter gave a limited number of numerical
solutions as a basis, and suggested some relations which
might give a better correlation. However, the proposed
relations were not evaluated in the mentioned work.
Solutions have been presented by Eilerts. et al™® for
flow of gas-condensate fluids in linear and radial systems.

It has been observed that as the gas flow velocity
increases, departure from Darcy’s law occurs.” > Such
flow is termed non-Darcy, or turbulent flow. Flow is
transitional, and not truly turbulent. A gas flow equation
including a quadratic velocity term to account for tur-
bulence near the producing well has been solved by
Swift and Kiel® and Tek er al.® for ideal gases. Eilerts
et al™ ™ and Carter™ ® also included non-Darcy flow in
their solutions for real gases. An approximate solution
including non-Darcy flow has been presented by Rowan
and Clegg.™

Two other calculational procedures appear in the works
of Roberts® and Kidder™ for solving the one-dimensional
flow equation for an ideal gas. Roberts used a stepwise
forward integration in time by joining together a sequence
of solutions for linearized differential equations. Kidder.
applying perturbation technique and using the well-known
Boltzmann transformation in the theory of diffusion, gave
an exact analytic solution for gas flow in a semi-infinite
porous medium. Kidder’s solution is very similar to a
more general one reported by Polubarinova-Kochina®™ on
the movement of ground water.

In summary, only a limited number of solutions for
flow of real gases are available, and these are not of
general utility. Furthermore, methods of analyzing gas
reservoir performance in current use are generally based
on solutions for the flow of ideal gases under the assump-
tion of small pressure gradients. These methods fail to
describe the behavior of low permeability and high pres-
sure reservoirs.

FLOW OF REAL GASES

The following concerning the flow of real gases through
porous media is drawn from an analogy with the theory
of heat conduction in solids.™ Variation of gas physical
properties with the pressure correspond to that of tempera-
ture-dependent properties in the theory of heat conduction.

The mechanism of fluid flow through a porous medium
is governed by the physical properties of the matrix,
geometry of flow, PVT properties of the fiuid and pressure
distribution within the flow system. In deriving the flow
equations and establishing the solutions, the following
assumptions are made. The medium is homogeneous,
the flowing gas is of constant composition and the flow
is laminar and isothermal. Assumption of laminar flow
can be removed, but will be used to simplify the presenta-
tion.

The principle of conservation of mass for isothermal
fluid flow through a porous medium is expressed by the
well-known continuity equation’:

V'[pV]=—¢—§—‘:-..........(l)

The velocity vector in Eq. 1 is given by Darcy’s law
for laminar flow as:
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Substituting Eq. 2 in Eq. 1 yields:
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Density can be eliminated from Eq. 3 to yield:

kip) ol p
. . =¢ |1 . . . . G
v { wi(p) z(p) pr] ¢ at[z(p)] ©)

Eq. 5 is one form of the fundamental non-linear partial
differential equation describing isothermal flow of real
gases through porous media.

The pressure-dependent permeability for gas was ex-
pressed by Klinkenberg” as:

b
py= k{1+ =%}y, . . . - 6
(p) ( p) 6)

where k, = effective permeability to liquids; and b = the

1
slope of a linear plot of k(p) vs R

However, the dependency of permeability on pressure
is usually negligible for pressure conditions associated
with gas reservoirs, as pointed out by Aronofsky.”* In a
subsequent paper, Aronofsky and Ferris"® indicated that
variations of gas properties with pressure are more im-
portant than variations of permeability with pressure.
Therefore, liquid permeability can be used for gas flow,
and the following equation is correct for all practical
purposes:
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Eq. 7 can be expanded to many different forms. For
example, Eq. 7 can be rearranged to point out explicitly
the real gas diffusivity

kK
pup)c,(p)’
Since
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Eq. 7 becomes, after some rearrangement:
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From the definition of the isothermal compressibility of
gas:
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Thus:
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Combining Eqgs. 9 and 11:

2 Permeability can be considered an important function of pressure for
a wet condensate gas as used by Eilerts.”: ® This case can be handled,
as will be shown later in this paper.

31



it — d(1n p(p)z(p)]

ne _ PuP)Ap) 3P
ar (Vpy = —5— (12)

2t

If it is assumed that viscosity and gas law deviation
factors change slowly with pressure change, the pressure
differential of [1n u(p)z(p)] becomes negligible. On the
other hand, the assumption that pressure gradients are
small will permit omission of terms of order (Vp°). In
either event, Eq. 12 can be simplified to:

o = 2HPep) S a3)
k ét

Eq. 13 is similar in form to the diffusivity equation.
However, the diffusivity is a function of pressure, even
for a perfect gas. In this form, the close analogy with
liquid flow found by Jenkins and Aronofsky™ * is empha-
sized. However, the assumption that pressure gradients
are small everywhere in the flow system cannot be justified
in many important cases. The assumption of small pres-
sure gradients is implicit in all of the pressure build-up
and drawdown methods currently in use which are based
upon ideal gas flow solutions or liquid flow analogies. We
return, then, to the rigorous Eq. 7.

Eq. 7 can be transformed to a form similiar to that of
Eq. 13 without assuming small pressure gradients, by
making a scale change in pressure. Define a new pseudo-
pressure m(p) as follows:

r

p
= 2 —_——e L.
m(p) f PP dp , (14)
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where p,. is a low base pressure. The variable m(p) has
the dimensions of pressure-squared per centipoise. Since
w(p) and z{(p) are functions of pressure alone for isothermal
flow, this is a unique definition of m{p). It follows that:
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om(p) and am(p)

with similar expressions for
P oy 0z

Therefore, Eq. 7 can be rewritten in terms of the vari-
able m(p) using the definition of ¢,(p) given by Eq. 10 as:
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Comparison of Eqgs. 13 and 18 shows that the form of
the diffusivity equation is preserved in terms of the new
variable m(p). However, Eq. 18 is still non-linear because
diffusivity is a function of potential. The gas law deviation
factor z does not appear in the equation, but is involved
in m(p) and c,(p). Eq. 18 does not involve the assump-
tions of small pressure gradients, nor that of slow varia-
tion of [u(p)z(p)].

The importance of Eq. 18 deserves emphasis. It is a
fundamental partial differential equation which describes
the flow of real gases. To the authors’ knowledge, this

'm(p) =
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equation has not been presented previously i connection
with gas flow. Equations of this type have been called
quasi-linear flow equations.™ * The real importance lies
in the extreme utility of this form of the equation. As
will be shown, the form of the equation suggests a
powerful engineering approach to the flow of real gases.

To solve Eq. 18, it is necessary to convert the usual
initial and boundary conditions into terms of the new
pseudo-pressure m(p). Important considerations are as
follows.

The gas mass flux is:

- q - Mk P

Vp = e p T e e ... (19
P=a? RT  u(p)up) b
In terms of m(p), the mass flux is:
g _ — Mk
7’) -—-——i—-R—T—,- Vm(p) P (20)

The usual boundary conditions are either specification
of pressure or the gas flux across bounding surfaces. When
pressure is fixed, m(p) can be determined from Eq. 14.
If flux is specified, the boundary conditions can be de-
termined from Eq. 20. If the outer boundary is imper-
meable, then:

dm(p) _
dn

where n is the direction normal to the boundary.
Steady-state flow occurs when pressure distribution and
fluid velocity are independent of time. Eq. 18 reduces to:

mp) =0 ., . . . . e e e (22)

which is Laplace’s equation. Thus, previous solutions of
the Laplace equation can be used if m(p) is used as the
potential.

Steady-state flow can rarely be obtained in reality be-
cause gas wells usually produce gas from a limited, finite
reservoir or drainage volume. There can be no flow across
the outer boundary. Thus, pressure must decline as pro-
duction continues. True steady-state would require pres-
sure to remain constant at the outer boundary, which
implies flow across the outer boundary. Production of
a bounded reservoir at constant production is an important
problem, which will be considered later in this paper.

0 . . . . . . ... ... @

REAL GAS PSEUDO-PRESSURE

To obtain generally useful solutions for Eq. 18, the
proper physical properties for natural gases must be
specified. Fortunately, all required physical properties have
been correlated as functions of pseudo-reduced pressures
and temperatures for many gases met in field work. It
should be emphasized that the concept of the real gas
pseudo-pressure is not limited to use of specific gas pro-
perty correlations. Pseudo-reduced pressure and tempera-
ture are defined, respectively, as:

p
p,,,=pw O )
and
T
Tr= v
" T 24)

where p,. is the pseudo-critical pressure and T, is the
pseudo-critical temperature. Real gas law deviation factors
z(p) have been presented by Standing and Katz.” Vis-




cosities of natural gases have been correlated by Carr
et al¥ as the ratio of viscosity at any pressure to that
at one atmosphere. Thus:

%";’: Py To) 25)

Compressibilities of natural gases have been correlated by
Trube™ as reduced compressibilities, the product of com-
pressibility and pseudo-critical pressure. That is:

Cpr = Cu(p) " Py = f(ppr: Tpr) (26)
Substitution of Egs. 23 to 25 in Eq. 14 yields:
9
i ./ 3.00
o IDEAL GAS—> .~ 2.50
S Pe
. .~ 2.00
y L75
34 7,
Z,
p 1.50
@
a
N
< \\ 130
als s
e oL Tpr =105
2L O
o PSEUDO~ REDUGED TEMP
084
5 o
b
o3
o 1 | i " AN O T L e

SO T
3 A5 678910 3 4 5 78910 1320 2%

PSEUDO -~ REDUCED PRESSURE pp,

Fic. 1-—Ratio or Psevpo-Repucep Pressure to ViscosiTy—Gas
Law Deviation Facror Probucr vs Psevpo-Repucep PRESSURE.

bar
2(p,.Y
M

Pyr

dp,. 7N

m(p) = -
(I)pr)w TL‘:(PW)Z(PW)

The integral can be evaluated generally from reduced
properties correlations.

EVALUATION OF REAL
GAS PSEUDO-PRESSURE

To establish the relationship between p,. and m(p), the
integral must be evaluated numerically for various iso-
therms. The lower limit of the integration (p,.). can be
set arbitrarily. A value of 0.20 was chosen. Selected
isotherms from pseudo-reduced temperatures of 1.05 to
3.0 were used.

Fig. 1 presents the argument of the integral in Eq. 27
vs pseudo-reduced pressure for various pseudo-reduced
temperatures. The dashed line represents the ideal gas case
with both viscosity ratio and gas law deviation factor
equal to unity. The magnitude of gross variations of gas
properties with pressure and temperature is apparent.

Fig. 2 presents m(p) integrals as functions of pseudo-
reduced pressures and temperatures. The integrals were
evaluated by means of the Trapezoidal rule using an
IBM 709 digital computer. Values of the integrals are also
presented in Table 1. Interpolation between the curves or
between the values presented in the table can be per-
formed easily.

Use of Fig. 2 or Table 1 is limited to gases containing
small amounts of contaminants for which changes in
viscosity and gas law deviation factor can be handied by
appropriate changes in the pseudo-critical properties, as
suggested by Carr er al.* However, useful charts can be
prepared for gases containing large amounts of con-
taminants if complete properties are known. See Robinson
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et al* for density data for gases containing large amounts
of contaminants.

In general, it is useful to prepare a chart of m(p) in
units of psi-squared per centipoise vs pressure in psi for
any given reservoir to aid engineering use of the real gas
pseudo-pressure. The m(p) can be computed readily for
any specific gas and reservoir temperature if density and
viscosity are known as functions of pressure. The integra-
tion can be performed using the Trapezoidal rule or
graphical integration. More sophisticated integrations are
usually not required.

The m(p) values in Fig. 2 and Table 1 are presented
as a convenience because it is necessary to assume many
gases do follow the existing correlations because of lack
of specific data. It is emphasized that the concept of the
real gas potential is general and is not limited to use of
the m(p) values presented herein. If viscosity and density
data are available for a specific gas, it should be used in
preference to Fig. 2 and Table 1 to prepare m(p) plots

for the specific gas.

TRANSIENT FLOW

CONSTANT-RATE PRODUCTION

As has been described in the introduction of this paper,
Eq. 7 has been solted for specific flow cases under ap-
propriate boundary and initial conditions by a number
of authors using finite difference solutions. We seek a
general solution which can be used for engineering pur-
poses without the aid of a digital computer. Eq. 18 and
the work of Aronofsky and Jenkins" provide a basis for
an approach. For radial flow of ideal gas, the continuity
equation leads to:

L Puc,(p) E_p_:

(28)

N . . . .

where c,(p) for an ideal gas is the reciprocal of the pres-
sure. Several features of Eq. 28 are noteworthy. First,

Ppr
u,mip) ppr dppr
AR I e Ty Tor £ (ppr) Z (ppr)
#“
0.2 )
Pseudo-
Reduced Vaiues of Integral for Pseudo-Reduced Temp Tpr of
Pressure
Prr 1.05 1,15 1.30 1.50 1.75 2.00 2.50 3.00
0.30 0.0257 0.022¢9 0.0198 0.0170 0.0145 0.0124 0.0100 0.0083
0.40 0.0622 0.0553 0.0477 0.0409 0.0348 0.0303 0.0241 0.0200
0.50 0.1102 0.0971 0.0839 0.0716 0.0609 0.0530 0421 0.0349
0.60 0.1698 0.1485 0.1283 0.1091 0.0927 0.0807 0.0640 0.0532
0.70 0.2418 0.2105 0.1810 0.1532 0.1303 0.1132 0.0898 0.0747
0.80 0.3264 0.2835 0.2419 0.2037 0.1734 0.1505 0.1194 0.0993
0.90 0.4236 0.3678 0.3111 0.2608 0.2221 0.1927 0.1529 0.1271
1.00 0.5326 0.463 0.3889 0.3246 0.2763 0.2397 0.1902 0.1580
110 0.6546 0.5691 0.4755 0.3954 0.3258 0.2915 0.2312 0.1920
1.20 0.7903 0.4855 0.5707 0.4734 0.4004 0.3483 0.2761 0.2292
1.30 0.9484 0.8126 0.6734 0.5579 0.4702 0.4098 0.3248 0.2695
1.40 1.1444 0.9503 0.7838 0.6484 Q.5452 0.4758 0.3773 0.3129
1.50 1.3671 1.0980 0.9020 0.7449 0.6255 0.5461 0.4335 0.3594
1.40 1.5828 1.2546 1.0277 0.8473 0.7114 0.6209 0.4932 0.4090
1.70 1.7924 1.4191 1.1606 0.9558 0.8025 0.7001 0.5566 0.46168
1.80 1.9959 1.5883 1.3001 1.0703 0.8983 0.7840 0.6235 0.5173
1.90 2.1926 1.7595 1.4457 1.1906 0.9988 0.8724 0.6940 0.5760
2.00 2.3821 1.931 1.5966 1.3164 1.1042 0.9653 0.7679 0.6378
2.10 2.5649 2.1071 1.7526 1.4474 1.2146 1.0624 0.8454 0.7025
2.20 2.7424 2.2841 1.9138 1.5838 1.3298 1.1636 0.9264 0.7701
2.30 2.9147 2.4619 2.07N 1.7253 1.4498 1.2687 1.0111 0.8407
2.40 3.0825 2.6399 2.2473 1.8712 1.5744 1.3777 1.0994 0.9143
2.50 3.2464 2.8172 2.4186 2.0214 1.7034 1.4904 1.1912 0.9907
2.60 3.4066 2.9937 2.5935 2.1758 1.8370 1.6068 1.2862 1.0700
2.70 3.5633 3.1683 2.7710 2.334 1.975% 1.7268 1.3846 1.1522
2.80 3.7169 3.3403 2.9504 2.4957 2.1169 1.8504 1.4864 1.2373
2.90 3.8679 3.5004 3.1320 2.6612 2.2626 1.9778 1.5915 1.3252
3.00 4.0165 3.6766 3.3153 2.8308 2.4123 2.100 1.6998 1.4159
3.25 4.3788 4.0876 3.777% 3.2485 2.8038 2.4534 1.984¢9 1.6550
3.50 4.7278 4.4874 4.2400 3.7223 .78 2.8178 2.2896 1.9112
3.75 5.0653 4.8766 4.7052 4.1897 3.6504 3.2016 2.6119 2.184)
4.00 5.3938 5.2579 5.1693 4.6678 4.0997 3.6049 2.9516 2.4731
4.25 5.7144 5.6367 5.6277 5.1539 4.5638 4.0268 3.3077 2.7782
4.50 6.0276 6.0088 6.0822 5.6459 5.0406 4.4663 3.6788 3.0994
4.75 8.3347 6.3697 4.5 6.1412 5.5280 4.9203 4.0649 3.4357
5.00 6.6368 6.7235 6.9714 6.6377 6.0234 5.3860 4.4664 3.7885
5.25 _ 7.0706 7.4044 7.1355 6.5252 5.8621 4.8825 4.1511
5.50 — 7.4124 7.8304 7.6343 7.0326 4.3472 5.3130 4.5286
575 e 7.7495 8.2497 8.1338 7.5449 6.8412 5.7575 4.9194
6.00 — 8.0821 8.6632 8.8336 8.0622 7.3442 6.2150 5.324)
6.25 _ 8.4099 9.0711 9.1326 8.5836 7.8551 6.6844 5.7413
6.50 - 8.7330 9.4731 9.6297 9.1085 8.3739 7.1643 6.1699
6.75 — 9.0520 9.8703 10.1249 9.6364 8.8993 7.6544 6.6104
7.00 — 9.3670 10.2835 10.6185 10.1665 9.4298 8.1543 7.0633
7.25 — 9.6786 10.6531 11.109 10.4973 9.9647 8.6633 7.5283
7.50 — 9.9876 11,0398 11.5957 11,2279 10.5034 9.1808 8.004¢9
7.75 —_— 10.2936 11.4223 12.0794 11.7587 11,0452 9.7064 8.4921
8.00 —_ 10.5963 11.7998 12,5615 12,2897 11,5897 10.2398 8.9884
8.25 —_— 10.8961 12.1731 13.0416 12.8211 12,1377 10.7812 9.4932
8.50 — 1.1935 12.5433 13.5194 13.3532 12.6897 11.3308 10.0062
8.75 — — 12.9102 13.993¢9 13.8858 13.2440 11.8872 10.528)
9.00 —— —_ 13.2735 14,4644 14.4187 13.7993 12,4497 11.0583
9.25 -— _— 13.6340 14.9322 14,9513 14,3558 13.0182 11.5962
9.50 —_ — 13.9925 15.3980 15.4834 14,9128 13.5926 12.1421
9.75 _— — 14.3483 15.8609 16.01446 15.4700 14.1700 12.6952
10.00 — — 14.7011 16.3205 16.5447 16.0274 14,7499 13.2545
10.50 — —_ 15,3996 172313 17.6030 17.1463 15.9178 14,3923
11.00 — —_— 16.0892 18,1318 18.8590 18.2662 17.0928 15.5560
11.50 —_— — 16.7703 19.0212 19.7090 19.391 18,2738 16,7372
12.00 — o 17.4427 19.8976 20.7507 20.5120 19.4614 17.9315
12.50 — —_ 18.1049 20.7640 21.7858 21,6135 20.4575 19.1388
13.00 — — 18.7642 21.6238 22,8166 22.7156 21.8627 20.3556
13.50 — _ 19.4147 22.4762 23.8434 23.8144 23.0724 21.5838
14.00 —— — 20.0588 23.3214 24.8616 24.9057 24.2820 22.8244
14.50 — — 20.9676 24.1596 25.8642 25,9948 25.4964 24.0719
15.00 — — 21.3%18 24,991 26.8596 27.0862 26.7197 25.3268
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the second degree pressure gradient term @p/ory does
not appear for an ideal gas. Second, Eq. 28 has the
form of the diffusivity equation, but the diffusivity is
proportional to pressure. Viscosity is a function of tem-
perature, but not of pressure for an ideal gas. Aronofsky
and Jenkins found that for constant rate production of an
ideal gas from a closed radial system, the pressure at the
producing well could be correlated as a function of a di-
mensionless time based on a compressibility evaluated
at the initial pressure. The correlation was slightly sensi-
tive to the production rate, but not sensitive enough to
affect engineering accuracy.

Aronofsky and Jenkins demonstrated that production
of ideal gas from a closed radial system could be ap-
proximated very closely from the solutions for transient
liquid flow of van Everdingen and Hurst.” Matthews™
later pointed out the application of: this conclusion to
pressure build-up analysis for gas wells as a liquid case
analog.

For radial flow of a real gas, Eq. 18 becomes:

Fmp) | 1 om(p) _ $up)c,(p) 2m(p)
ar r @r k ar

(29)

The close analogy between Egs. 28 and 29 suggests
that the real gas pseudo-pressure m(p) should correlate
as a function of a dimensionless time based on viscosity
and compressibility evaluated at the initial pressure, if
the variation of the viscosity-compressibility product with
m(p) for a real gas is similar to the variation of com-
pressibility for an ideal gas (1/p) with pressure squared.
Fig. 3 shows the comparison.

In view of the close resemblance between (uc,) vs
m(p) for the real gas, and p— vs p’ for the ideal gas,
it is reasonable to expect solutions for the flow of real
gases to correlate as functions of a dimensionless time
based on initial values of viscosity and compressibility.
That is, let:

L
dluc,)re’

Further, define a dimensionless real gas pseudo-pressure
drop my(ry, to):

1 B0

=khT,. [m(p.)—m(r, 1)]

my(rp, to) = qopT

, . . (3D

where r, = r/r,. The dimensionless real gas pseudo-
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pressure drop is thus amalogous to the van Everdingen-
Hurst® dimensionless pressure drop po{ro, t).

Fig. 4 shows the comparison between po(tp) for the
liquid flow solutions and my(t,) obtained from Eilerts
et al.® solutions for the radial flow of natural gases. The
solid line represents the liquid case, while points shown
are computed from the Eilerts et al. solutions. As can be
seen, the comparison is excellent for the entire range of
fiow considered by Eilerts et al. for both natural gases
and condensate gases. The transient flow data computed
by Carter™ ® correlate just as well. The Eilerts et al
data are a severe test of the linearization of the real
gas flow equation, because production included a ten-
fold range in production rate, and almost complete de-
pletion over a pressure range from 10,000 to 1,000 psi.
Carter's results covered a range from 4,700 to 1,180
psia, and a more restricted range of flow rate.

The mu(ts) correlation (Fig. 4) is actually not as good
as it appears. Although it is quite good at times before
the boundary effect is felt, at long times there may be a
considerable difference between m(t,) and pu(ts) values
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(Fig. 5). Also shown on Fig. 5 are the Aronofsky-Jenkins”
ideal gas flow results. It is clear that both the ideal and
real gas cases lead to dimensionless pressure drops which
are lower than the liquid case—and which are flow-rate
dependent. Another important difference is illustrated by
the case Q = 0.05. The ideal gas line terminates at the
point where the well pressure is zero. The real gas
solutions terminate at a well pressure of 10 per cent
of the initial pressure. Although not shown on Fig. 5.
the production times for the real gas cases to reach a
limiting production pressure are about two and a half times
that required for the ideal gas flow cases. Clearly, pro-
duction forecasts based on the ideal gas solutions will
be far too conservative.

Another important observation can be made from Fig.
5 by comparing the real gas solutions for natural gas
and condensate for a flow rate Q. of 0.05. Although the
natural gas line is close to the liquid case, the condensate
line is far below the liquid case line. The terminal pro-
ducing pressure is reached earlier for the condensate line
than for the natural gas line. This indicates the importance
of gas property variations upon the results. That is, no
single set of my(t,) correlations could be expected to
apply to all real gases at long production times. It is
also clear from Fig. 5 that the real gas resuits tend to
approach the liquid case results as flow rate decreases.
and at small production times.

Aronofsky and Jenkins introduced the concept of a
transient drainage radius r,. This term should not be
confused with the dimensionless radial coordinate r..
From the Aronofsky-Tenkins definition of the transient
drainage radius, we write for real gas flow:

ro _ =khT,. -

1n.;:_= T [m(p)—m(p,)] = mu(p.) — mup)

(32)

The Eilerts et al.™ results can also be correlated as
transient drainage radii vs dimensionless time. The results
are presented in Fig. 6, and agree with the Aronofsky-
Jenkins results and the liquid flow results almost exactly.
Actually, the correlation of the real gas flow solutions in
terms of the transient drainage radius (Fig. 6) is a much
better correlation than the correlation in terms of my(1,)
(Figs. 4 and 5). The drainage radius correlation is ex-
cellent for all values of production time. Thus, Eq. 32
provides the most useful engineering approach to the
transient flow of real gases. As recommended by Jenkins
and Aronofsky for ideal gas flow, the transient drainage
radius for real gas flow can be found from:"

ln.r:..: Pn(’n) — Ztn(_rw_). e e e e e (33)
Ve re

and the m(;) can be found from the materials balance:

m(pi)
PY_(E) - Trai _ 1
z /, z whr,'¢T., 2 -

mp)
(ue) dm(p) z(“‘c‘-—z‘)—“i“[mw.)-nu'ﬁ)] .68

Eqs. 32 through 34 are not strictly a solution to Eq.
18. They represent an excellent engineering approximation
which applies for a wide range of conditions. The method
appears to be every bit as good as the Jenkins-Aronofsky
result for ideal gas flow.

Fig. 6 shows that at long production times r, takes the
constant value 0.472 r,. This is similar to the Aronofsky-
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Jenkins finding for ideal gas. Substitution ot long-time
values for py(t;) in Eq. 33 also leads to this conclu-
sion. Thus, Eq. 32 becomes similar in form to the
liquid case pseudo-steady-state equation at times long
enough that the outer boundary effect is controlling. The
fact that r, eventually becomes constant at 0.472 r, does
not mean the physical drainage radius stabilizes about
half-way out in the reservoir. The entire reservoir volume
is being drained. as can be seen by inspection of any of
the Eilerts er al.” production figures.

The Eilerts er al. solutions have provided an excellent
set of information to test the linearization of the real
gas flow solutions for production. Eilerts et al. specified
that the effective permeability was a function of pressure
(assuming pressure drop would resuit in condensation and
reduction of effective permeability). Effective permeability
can thus be taken within the m(p) integral. Correlations
in Figs. 4 through 6 do include a pressure-dependent
permeability. Thus, if an approximation of the effect of
pressure drop upon liquid condensation and reduction in
permeability near the wellbore can be made, the per-
formance can be estimated from:

%= q?/f:'”T[m’(l;)—m’(p,)} Y < 1}
where
»
m'(p) = 2./'"’5“:” L6
Pm

and £ is a known function of pressure.

The usefulness of considering & a function of pressure
to handle condensate flow might be open to question.
Nevertheless, it is clearly indicated that variation of k as
a function of pressure can be included in the real gas
pseudo-pressure.

Correlation of the Eilerts er al.® data presented pre-
viously involves calculation of m(p) and determination of
relationships between the Eilerts er al. nomenclature and
that used in this paper. (Necessary relationships are in
the Appendix).

Eilerts et al™ also determined performance with a
steady-state. non-Darcy flow region near the producing
well. As a result, a steady-state skin effect can also be
introduced to yield the following approximation for the
radial flow of real gases during production:

=khT.. [m(p)—m(p.)] re
=ln—+s+Dg., . (37
q.p.T r.
j i i
[} ]
%
o el i+ 4ac0
oo g
& 2o
P gl ) —
F
- LIGUID CASE, REF. 15
NATURAL GAS3, REF. 20
e Q:005 o —
o0 o
025
050 v
2p— —
! | ! !
oY 0% o G [ [

1

Fic. 6—JENKINS-ARONOFSKY Dra1Nacr Rabius vs ¢, For A CLosEn.

Rapiar. Reservorr Propucep at Constant Rate.



where s is the skin effect and D is the non-Darcy flow
coefficient.

CONSTANT RATE INJECTION

All of the preceding discussion of real and ideal gas
transient flow deals with production only. Injection results,
as was clearly shown by Aronofsky and Jenkins™ for
radial ideal gas flow, cannot be linearized in as simple a
fashion. Aronofsky and Jenkins correlated injection well
pressures for radial flow of an ideal gas as functions of
a dimensionless time based on gas compressibility eval-
uated at the initial formation pressure before injection.
The dimensionless pressure rise at a given dimension-
less time was generally greater than that for a liquid
case, and increased with injection rate. Aronofsky and
Jenkins showed that injection case results were very
close to the liquid case for low injection rates. Although
injection is of practical importance in itself, the major
wtility of injection case correlations is in application of
the principle of superposition to generate variable rate
production cases, including the important pressure build-up
case.

Superposition, as it has been applied in gas well testing.
requires that dimensionless times for both injection and
production be based on the same gas physical property
evaluation. Although superposition could be based on
different dimensionless times for injection and production,
the added complexity of such a scheme does not appear
justified. Thus, an obvious question is: will injection
solutions correlate closer to the liquid case if dimen-
sionless times are based on physical properties evaluated
at a pressure above the initial, low formation pressure?

We rule out the scheme of using a point evaluation
at the existing injection pressure because this would vield
a result not usable for forecasting. That is, it would be
necessary to know the injection pressure-time history
before it could be calculated. An obvious possibility is
to evaluate physical properties at the final, elevated in-
jection pressure, or in the case of superposition applied
to reservoir production or build-up, at the initial forma-
tion pressure before production was started. This idea is
fundamentally the basis for all gas well pressure build-up
applications currently in use.

In brief, correlations for injection based on an elevated
pressure are.no better (or worse) than those based on
physical properties evaluated at the initial, low formation
pressure. This is true for both the ideal and real gas
flow cases. Fig. 7 presents the dimensionless real gas
potential rise for the Eilerts er al.™ injection case (their
Fig. 8) correlated vs dimensioniess times based on both
the initial, low formation pressure and the final injection
pressure. The dashed line presents the liquid flow solu-
tion. Two facts are apparent: the slopes of the correlations
are similar, and correlations based on final injection pres-
sure are no worse than those based on initial, low
formation pressure. From the Jenkins-Aronofsky studies
of ideal gas flow, we can also conclude that the difference
between the injection case correlations and the liquid
case become smaller as injection rate decreases; in any
case, the differences aren't large.

Fig. 7 can lead to another idea. Correlation based on
a dimensionless time evaluated with physical properties
about half-way between the extremes might be quite
‘good. This idea follows immediately from the theorem
of the mean. That is, if flowing fluid physical properties
vary monotonically with potential, the proper result is
limited by those evaluated at the extreme values of
physical properties. Friedmann® proved that results must
lie between those evaluated at the extremes of physical

properties whether physical properties are monotonic func-
tions or not. The injection problem has been the subject
of much investigation in the fields of heat transmission
and ground-water movement (Friedmann,” Storm® and
Polubarinova-Kochina™. As has been shown by these
authors, it cannot always be assumed that evaluation at
an average property will yield good results. Sometimes
the answer will vary from one extreme to the other.

SUPERPOSITION OF
LINEARIZED SOLUTIONS

Superposition is rigorously correct only for linear
partial differential equations. Nevertheless, the extremely
close check between the linearized real gas solutions cor-
related on the basis of the my(t,), as given by Eq. 31,
and a 1, given by Eq. 30, and the liquid flow solutions
of van Everdingen and Hurst, indicates the possibility
that superposition might be quite good for matching an
increasing rate production schedule. An increasing rate
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schedule would require superposition of positive incre-
mental rates. However, the real gas flow soiutions do
depend slightly upon production rate. Thus, the only
way that the application of the principle of superposition
(as an acceptable approximation) to real gas flow can be
established is by comparison with finite-difference solu-
tions of variable-rate, real gas flow problems.

Such a comparison can be made for an increasing
production rate schedule from data for real gas flow
published by Carter.® Carter studied the effect of well-
bore storage on gas production. For his solutions, it was
assumed that the surface flow rate was held constant,
but 0.02965 Mcf was withdrawn from the wellbore per
psi pressure drop in the wellbore. This resulted in the
sand face flow rate increasing as a function of time
toward the constant surface flow rate. This case is almost
exactly analogous to the wellbore unloading case pre-
sented by van Everdingen and Hurst® in their Eq.

VII-IL. The wellbore storage constant C for Carter's
solutions can be determined from Egq. 6 presented by

Ramey.” The value of C for Carter’s solutions does vary"
slightly with pressure, but a value of 300 is quite good.
Fig. 8 presents a comparison between the m,(t,) obtained
from Carter’s solutions, both with and without wellbore
storage, and the van Everdingen-Hurst p,(r,) solutions
for the liquid flow case. As can be seen, the comparison
with constant rate liquid flow wirhout storage is excellent.
This was previously shown for the Eilerts et al.” solutions.
Of more interest, the comparison between the liquid
flow case wirh wellbore storage and Carter’s two solu-
tions with wellbore storage are also excellent. This
establishes that superposition of the linearized real gas
flow solutions for an increasing flow rate should be a
very good approximation—at least before outer boundary
effects are controlling.

Although superposition in an increasing production
rate schedule appears quite good, it is not apparemt that
a decreasing rate schedule is susceptible to superposition.
This results because the dimensionless real gas injection
pressure increases do not correlate with the liquid case as
well as do production data. Even for transient injection
of an ideal gas,” the resuiting dimensionless pressure
rise appears to depend upon injection rate, but does
approach the liquid case solution as injection rate de-
creases. The fact that injection results do approach the
liquid case as injection rate approaches zero suggests
that superposition of small positive incremental rates
(injections) would be feasible. Again, the possibility can
only be checked by comparison with finite-difference
solutions.

Fortunately, both Carter™ and Dykstra" have pre-
sented finite-difference solutions for decreasing flow-rate
production. Dykstra’s data provide an excellent set for
comparison of finite-difference solutions with superposi-
tion of the linearized solutions. Fig. 9 presents a com-
parison of Dykstra’s computed flowing pressures with
those obtained by superposition of linearized real gas
flow solutions. The line is Dykstra’s result, while points
represent results of superposition using only four or five
incremental rate changes to represent a rapidly changing
flow rate. The flow rate is shown by the dashed line.
For the example shown, the permeability was 0.25 md,
thickness was 179 ft, initial pressure 6,150 psia and
flow rate declined quadratically as a function of time
from 6,556 to 2,500 Mcf/D by 50 days’ producing time.
Superposition was accomplished using dimensionless times
based on the initial pressure and the my(t,) taken equal
to the liquid case p,(t,) values. The maximum difference
between Dykstra’s result and those computed by super-
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position was 20 psi out of a drawdown of 2,150 psi—
a difference of 0.9 per cent. The 50-day production
period was long enough that initial rate changes were
influenced by the outer boundary. Thus, we conclude
that superposition can be used to reproduce variable-
rate drawdown data with acceptable accuracy.

The previous remarks concerning superposition of in-
cremental rate increases are, of course, directly applicable
to pressure build-up testing. Although insufficient com-
parisons between finite-difference build-up solutions and
superposition solutions for the real gas flow case have been
made to completely explore this problem, it does appear
that build-up theory can be used with good accuracy.
An interesting test of pressure build-up can be made
by comparison of Dykstra’s" solutions with superposi-
tion solutions. Because Dykstra’s cases involved a vari-
able-rate production period, permeability was low and
pressure gradients high, it is believed that a fairly
extreme test results. Fig. 10 presents the build-up fol-
lowing the drawdown of Fig. 9. As can be seen, the
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superposition result yields a similar build-up curve of
identical slope, but about 60 psi below Dykstra’s
finite-difference solutions. Again, the percentage difference
is small; the final static pressure is about 1.1 per cent
too low. It appears that superposition of the real gas
flow linearization will always yield a pressure build-up
static pressure that is too low, but as good or better
than results of current methods. Furthermore, field applii-
cation would be to the field measured data—the real
solution—which would tend to correct for this error.
We conclude that pressure-build-up analysis based on
superposition can be done for real gas flow with ac-
ceptable accuracy, but that further study of pressure
build-up for real gas flow is desirable.

STEADY-STATE AND PSEUDO-STEADY-
STATE FLOW

r.adial gas flow at constant production rate will be
«vusidered. A horizontal homogeneous porous medium
or constant thickness A with impermeable upper and
lower boundary, and a well of radius r, located in the
center of a radial reservoir, constitutes the flow system.
The outer radius r, represents either the real boundary
or the radius of drainage. Two cases will be considered:
(1) constant pressure at r,, and (2) no flow across r..

CONSTANT PRESSURE AT
OUTER BOUNDARY

The steady-state equation for a real gas in axisymmetrical
coordinates can be written from Eq. 22 as:

1d dm(p)] _
.;.d_r[r_-&.r_}no B 1))

The boundary conditions for two concentric cylinders of
radii 7., and r, are:

r=r..mp)=mp,) . . . . . . . (39
r=r.omip)=m(p.) . . . . . . . (40

Integrating Eq. 38 and using the boundary conditions, the
steady-state pressure distribution in the system is:

- = 92T r
m(pr) m(pw) wKkhT.. (1“';:') .. . 4D
Eq. 41 can be evaluated for p = p, at r = r, and re-
arranged to provide an equation analogous to the normal
radial flow equation:

kAT, [m(p.)— m(p.
Goe =2 [(p)r(p)] . @D
Tp.. 1n~;—'—

Both Egs. 41 and 42 are in darcy, or cgs units. Thus, the
m(p) have the units of sq atm/cp.

NO FLOW ACROSS
OUTER BOUNDARY

As was shown previously by Eq. 32 and Fig. 6 at long
times, a flow equation for the closed outer boundary,
constant mass rate production, radial flow case can be
written:

0472 r, wkhT,. -
nJe o 0472 m(p)—m(p)] . (43)
re e q..0.T

Since the m(p) values were determined from a materials
balance, the P argument represents the average pressure
which would vield the proper average density, or the

static pressure following a complete pressure build-up.
It is nor a volumetric average pressure. Eq. 43 coupled
with the normal material balance for a bounded drainage
volume provides a useful means to couple production rate
and gas recovery.

In the case of liquid flow, an equation similar to Eq.
43 can be derived using the concept of pseudo-steady-state
flow. That is, a condition is eventually reached for con-
stant rate liquid production when the rate of pressure
decline becomes constant everywhere in the reservoir.
This condition is expressed mathematically by setting
the Laplacian of the pressure equal to a constant (other
than zero). Altthough it can be shown that the Laplacian
of pressure-squared for an ideal gas, or the Laplacian
of the real gas pseudo-pressure cannot be equal to a
constant rigorously, a flow condition similar to pseudo-
steady-state does appear to exist for both ideal and real
gas flow, for all practical purposes. The existence of
such a condition is suggested by Eq. 43. Fig. 11 presents
an interesting inspection of the pressure behavior during
the period that Eq. 43 applies for one of the Eilerts er al.*
cases. Also shown is the p,(t,) for comparison with the
liquid case. As was seen previously in Fig. 5, the my(to)
does not change at a constant rate during this period.
Although it matches the liquid case solution at early
times, eventually the my(t,) drops below the liquid case
solution. The most interesting feature of Fig. 11, how-
ever, is that the my(rp, t,) for all radial locations are
essentially parallel. Thus, the m(p) profile is essentially
independent of time. This condition can be described
approximately by setting the Laplacian of m(p) equal to
a constant. As shown in Refs. 39 and 42, this leads to
an equation similar to Eq. 32, but in terms of an
average m(p) rather than m(p). Although it can be shown
that these two averages tend to be equivalent for practical
ranges of conditions, it does not appear worthwhile to
show the development here. In any event, Eq. 32 de-
scribes the long-time flow behavior of closed radial systems
with remarkable accuracy.

Another consequence of inspection of Fig. 11 is that
the m(p) distribution can be obtained readily. For ex-
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ample, the following equation also describes flow reason-
ably well:

1n(0.606 !;) = AT oy mp) . @4
re q.epecT

DISCUSSION AND CONCLUSIONS

The purpose of the preceding was to describe funda-
mental considerations which can be used successfully to
analyze the flow of real gases. The concept of the real
gas pseudo-pressure promises a considerable simplification
and improvement in all phases of gas well testing analysis
and gas reservoir calculations. Such applications will be
described in useful engineering form in a companion
paper.

Several remarks concerning the real gas pseudo-pressure
are in order. No claim of originality can be made for
the substitution we have called the real gas pseudo-
pressure. Carslaw and Jaeger® reviewed application of a
similar transformation which was used in solution of
heat conduction problems as early as 1894 and the
early 1930's. Recently, McMordie™ pointed out the utility
of this sort of transformation in heat conduction problems.
There have even been numerous mentions of the use
of a transformation similar to the m(p) function in con-
nection with flow through porous media. In 1949,
Muskat” used the same transformation in a discussion of
the theory of potentiometric models. In 1953, Leibenzon"
used the transformation, and Russian authors refer to
it as the Leibenzon transformation. In 1951, Fay and
Prats™ discussed use of a similar transformation in con-
nection with transient liquid flow. In 1955, Atkinson
and Crawford® evaluated numerically a similar function
but with constant viscosity. In 1962, Carter® used a
gas mobility term M(p), which was defined as:

_ khp
M(p)__T—jL? .

Clearly, the m(p) function is proportional to the pres-
sure integral of Carter’s M(p). In 1963, Hurst et. al®
used a similar integral, but with constant viscosity.
To our knowledge, however, this paper represents the
first application of the real gas pscudo-pressure to lineari-
zation of transient real gas flow. Perhaps the most
surprising fact is that the realization of the utility of
this concept has been so long in coming.

In the original draft of this paper and the companion
paper,” “ we called the m(p) function the real gas
potential. It was stated in those papers that the m(p)
transformation was not a true potential. Carslaw and
Jaeger™ termed a similar substitution in heat conduction
an effective potential, while Muskat® called the trans-
formation a potential as a matter of convenience. We
feel that the m(p) transformation will be an important
function in gas reservoir engineering, and it is important
that the function be given a suitable name. If we were
to name the transformation as Russian authors have, we
would call it the Muskat transformation. In the belief
that the name should be reasonably descriptive and
brief, the term real gas pseudo-pressure was finally selected.
This name was originally suggested to us by M. Prats,
with Shell Development Co.

It appears that the following conclusions are justified.
The transformation called the real gas pseudo-pressure in
this paper reduces a rigorous partial differential equation
for the flow of real gas in an ideal system to a form
similar to the diffusivity equation, but with potential-
dependent diffusivity. Because the variation of the dif-
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fusivity of real gas with pressure was similar to that
of an ideal gas, it was possible to correlate finite difference
solutions for the ideal radial production of real gas
from a bounded system with the liquid flow solutions
of van Everdingen and Hurst, and the ideal gas solu-
tions of Aronofsky and Jenkins. This correlation avoids
the assumption of small pressure gradients in the reser-
voir and offers generally useful solutions for the radial
flow of real gas.

An investigation of the injection of real gas into a
bounded radial system also gave a reasonable correlation
—but not as good a correlation as production data. The
correlation was as good as, or better than, the correlation
of ideal gas flow results made by Aronofsky and Jenkins.

An investigation of the possibility of superposition of
the linearized results indicated that superposition can
be used as an acceptible engineering approximation to
generate variable rate flow of real gases in a radial
system. Pressure build-up for real gas flow was thus
justified for the first time. (No justification for pressure
build-up for the non-linear problem of ideal gas flow
has yet been presented.)

Accurate and simple equations can be written to
describe unsteady flow of real gases which properly con-
sider variation of gas physical properties.

NOMENCLATURE

V = grad
v+ = divergence
V* = Laplacian operator
A = area, sq cm
b = slope of a straight line in a plot of k(p) vs 1/p
¢,(p) = real gas compressibility defined by Eq. 10
h = thickness, cm
k(p) = effective permeability, darcies
M = molecular weight
m(p) = real gas pseudo-pressure defined by Eq. 14
P = pressure, atm
q = flow rate, cm®/sec
r = radius, cm
R = gas constant
t = time, sec
T = temperature, °K
v = velocity, cm/sec
V = pore volume, cm®
x, ¥, z = direction notation
z(p) = gas deviation factor, a function of pressure
at constant temperature
p = density, gm/cm®
#(p) = real gas visocosity, a function of pressure at
constant temperature, cp
M1 = viscosity at atmospheric pressure, cp

n = normal distance scale
¢ = hydrocarbon porosity, fraction
SUBSCRIPTS
e = external boundary
! = liquid
pc = pseudo-critical
r = radius

sc = standard conditions
w = internal boundary, the well

s o
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APPENDIX
CORRELATION OF EILERTS ET AL.* SOLUTIONS

Eilerts et al.™ solved the following equation numerically
(in their nomenclature);

3 P w [ P
“a?f{w””?a'} =e ‘a?f[‘zm] - A

where

P = p.P,K(p) = k(p)K(P), z2(p) = z(p)Z(P), u(p)
= ulp.) p(P), w(p) = k(p)/ u(p)z(p)

and
wp) = wp)W®y . . . . . . . . . (A-2)
Dimensionless time is defined as:
p.k(p)
T e A-3
2¢u(pry (4-3)
and the dimensionless radius:
U=1n-i............(A-4)

Ty

In terms of the m(p) function, and using the difnension]ess
variables Eq. A-2, the flow equation takes the form:

_L_j__ , am(P) = PP )uP)c,(P) Bm(P) (A-5)
r or or p.k(p,)K(P) o
where
P
mP) = 2 f PWPqP . . . . . . . (A-6)

o

Let the coefficient on the right side of Eq. A-5 be
evaluated at the initial conditions, and define:

ry, = r—:—. . . . . . . . . . . (A'7)

kip)p. 2H (r,\*
-;—-) . (A-8)

b
w0

* = e ®or T T\

Notice that x(P) and K(P) are equal to one at the initial
P. Hence, Eq. A-5 takes the form:
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Fi6. 12—-m(P) vs P ror tHE EiLERTs er al.™ Gasts.

(A-9)

11 am(P) | _ am(P)
T ors | " are | o

The flow rate at the producing face as given by Eilerts
et al.® is:

op* om(P)
== — D -
Q 2W(P) Y7 2350 , (A-10)
and the closed boundary:
om(P)
——al—j—ao............(A-ll)

Thus, in terms of the dimensionless real gas pseudo-
pressure drop:

mo(’n.’n)"‘é—*Am(P) I 7. )

The m(P) for the Eilerts er al. natural gas and con-
densate fluid are shown in Fig. 12. The large difference
between physical properties of the two fluids is apparent.
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ABSTRACT

Previous gas well test analyses have been based mainly
upon linearizations of ideal gas flow results, although a
method for drawdown analysis based upon real gas flow
results has been proposed. Linearizations based upon ideal
gas flow require estimation of gas physical properties at
some sort of average pressure, and implicitly involve
the assumption that pressure gradients are small everywhere
in the reservoir. A new real gas flow equation has been
developed by means of a substitution which couples pres-
sure, viscosity and gas law deviation factor. This sub-
stitution has been called the real gas pseudo-pressure.
Use of the real gas pseudo-pressure leads to simple
equations describing real gas flow which do not con-
tain pressure-dependent gas properties, and which do not
require the assumption of small pressure gradients every-
where in the flow system.

Equations required to determine flow capacity, well
condition and static formation pressure from pressure
drawdown and build-up tests with the real gas pseudo-
pressure concept are presented. Also shown are applica-
tions of the real gas pseudo-pressure to back-pressure
testing, the gas materials balance and rigorous determina-
tion of average gas properties for previous gas flow
equations. Included are sample calculations for well test
analyses. ‘

INTRODUCTION

A recent study’ of the flow of the transient flow of
real gases in ideal radial systems showed that it is
possible to consider gas physical property dependence
upon pressure by means of a substitution called the real
gas pseudo-pressure. The substitution has the advantage
that it enables engineering solutions for steady and
transient flow of real gases that are more accurate and
general than those previously available. The solutions
are particularly important for the case of gas flow in
tight, high-pressure formations under large drawdowns.
Even for more ideal flow conditions, the real gas pseudo-
pressure concept leads to important rules for finding
average gas physical properties pertinent for older well
test analyses.

Ref. 1 provides a detailed study of the theory behind
the real gas flow correlations to be used in this paper.
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June 28, 1965. Revised manuscript of SPE 1243B received Feb. 18.
1966. Paper was presented at SPE Annual Fall Meeting held in Denver.
Colo., Oct. 3.6, 1965.
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The purpose of this paper is to provide necessary engi-
neering forms for use of the real gas flow results, and
to illustrate applications.

The following considers flow of real gases in an ideal
radial flow system. It is assumed that: (1) formation
thickness, porosity, water saturation, absolute permeability,
temperature and gas composition are constant; (2) gas
compressibility and density are functions of pressure as
described by the gas law pv = znRT; (3) gas viscosity
is a function of pressure; (4) effective permeability to
gas may be a function of pressure to account for liquid
condensation; (5) condensate is immobile; and (6) the
formation has no dip.

SUMMARY OF REAL GAS FLOW EQUATIONS

Combination of the continuity equation and Darcy’s
law for radial flow of a real gas yields the equation:

1L af,_p o] _¢ 23[p )

r or wpz(p)y or k atlzppy™ ~ -
If the left-hand side of Eq. 1 is differentiated, a term
involving (3p°/dr)° arises which does not occur in ideal
gas flow equations. Thus, modification of ideal gas flow
solutions to fit real gas flow involves the assumption
that pressure gradients are small. An alternate procedure
is to make a change of variable in Eq. 1.

We define the real gas pseudo-pressure m(p) as:

b4

D
= —_—dp . . . .. (2
m(p) 2 f w(p)z(p) p @

P

As shown in Ref. 1, substitution of m(p) in Eq. 1 leads to:

'm(p)
or +

em(p) _ pu(p)e,(p) dm(p)

or k ot )

1
P

Eq. 3 looks like the diffusivity equation, but is still
non-linear because the diffusivity depends upon pressure,
or m(p). Eq. 3 also closely resembles the equation for
the flow of an ideal gas. Furthermore, the dependence
of the diffusivity term upon m(p) for the real gas is
very similar to the dependence of the ideal gas diffusivity
upon pressure squared. As is shown in Ref. 1, this leads
immediately to practical solutions for Eq. 3 which are
similar to the Aronofsky-Jenkins® ideal gas flow solutions.
Engineering units will be used throughout the following.
For production of a real gas in an ideal radial system
at constant rate with a closed outer boundary:




1.987 X 107 khTsc

[m(F}-m(p,)] = ln—;r-i + s + Dgq

qp..T «
4)
where
ln—Q- :Po(tu) -2 tb(";‘i)A P (5)
and
0.000264 k¢
tn U am-tar el 6
¢([.LC¢)J'.¢‘ ( )

The m(p) is evaluated at an average pressure determined
from a materials balance:

(£). - (5)-

= (Fcy)-vc [m(p~)"' m(;)] e e e e (7)

m(pi)

Tp"Gv _
T aS T f(.uca) dm(p)

The po(tp) is the van Everdinger-Hurst® dimensionless
pressure-drop function. For large ratios of r./r.:

1
Polto) = -5 [int,+0.80907] , for 100 < 1, Q-th—
ro\°
¢
r“‘
r. 3 ro \? 1
Pn(ln)=1n—;;———4—+2tu(—-:—) ,for tp)-—4—

(- e
rw

Eqs. 4 through 9 are not an explicit solution to Eq.
3. But they do represent an excellent engineering ap-
proximation good for a wide range of conditions.

The total system compressibility in Eq. 6 (c;) normally
can be taken equal to the gas saturation-gas compressibility
product S,C,. The porosity used is the total porosity.

In view of the finding that production of real gas can
be linearized as abowe, we can write a very useful equa-
tion for the real gas pressure at the inner boundary of an
infinite reservoir produced at constant rate, including a
steady-state skin effect and non-Darcy flow term for
t» > 100, and before outer boundary effects are important:

gp..T

) = ) — 5.792 X 10
m(p.,) = m(p;)) — 5.79 lokhT.c

[1ong,, + 0.3513

+ 0.875'-‘;—0.87Dq] e L

If standard conditions are taken to be 14.7 psia and 60F:
qT
m(p.,) = m(p.) — 1,6377{—11- log., 2o + 0.3513 + 0.87s

+ O.87Dq]. S €9 )
And for long flowing times:
khT.. [m(p)—m(po,)]

g = 1.987 X 10°
p.,T[ln0'472 Te b s+ Dq]

.(12)

©

In the preceding equations, s is the familiar skin effect,
and (Dg) is an approximate non-Darcy flow term.' The
non-Darcy flow coefficient D is inversely proportional to

gas viscosity, and slightly dependent on time for very
short transient flows. However, D can be considered
constant as an adequate engineering approximation.

APPLICATION OF REAL GAS FLOW EQUATIONS

The following describes application of the real gas
flow equations to common Ccases of gas well flowing
testing (drawdown, build-up and back-pressure testing).

DRAWDOWN TESTING

Eqs. 10 or 11 provide the basis for drawdown test
analysis for real gas flow. From Eq. 10, it is apparent
that a plot of m(p.,) vs the logarithm of the producing
time for constant rate production should produce a
straight line of slope:

qp,.T

— b =15792 X 10 T (13)
Or for standard conditions of 14.7 psia and 60F:
qT
—b=1, L e e 4
b= 1637 7 (14)

Eq. 14 is analogous to the equation for analyzing build-up
and drawdowns for gas wells presented by Tracy,’ except
neither viscosity nor z appear. The striking feature of all
of the real gas flow equations presented in the previous
section is that pressure-dependent viscosity and gas law
deviation factor are absent.

Procedure is as follows. Drawdown data are taken as
in the past: measure sandface producing pressures as a
function of producing time for constant rate of pro-
duction. Next, produce a working plot of m(p), psi’/cps
vs pressure in psi for the reservoir. If specific viscosity
and density data are available, this can be done by
graphical integration or the Trapezoidal rule using Eq.
2. If viscosity and z-facter correlations are normally used,
m(p) can be found without integration by reading either
Table 1 or Fig. 2, Ref. 1. Drawdown pressures are
converted to appropriate m(p) values and plotted vs the
logarithm of drawdown time, and a straight line is
passed through the data. Either Egs. 13 or 14 can then
be used to find the flow capacity. An example calulation
is given in the Appendix.

In general, production of an m(p) vs p working plot
for a given reservoir requires less effort than squaring
pressures as in current methods. The plot, of course,
may be used for all wells producing from the same
reservoir if formation temperature and gas composition
does not vary widely.

Eqs. 10 or 11 can also be solved for the skin effect
and non-Darcy flow coefficient. This resuit is:

m(P.) - m(pt hr)

s’ =5+ Dqg = 1.151 [ > -~ log,
k

— 323 . . ..o (15

puc)ire’ ] (13

It is necessary to have drawdown tests at two flow
rates to determine both the skin effects and the non-
Darcy flow coefficient D separately. As described by
Ramey,® wellbore storage effects or any variable-rate test
can often be used to separate the skin effect and non-
Darcy flow. The real gas potential drop across the skin
can be found from:

AMP) e =087 (=b)s . . . . . . . . . (16)

Flow efficiency can be found by means of Egs. 12 or 13:
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FE = Jooc/Jowy = TR Pe) = & 10D v (1
m(p) - m(Pu)

in analogy with the expression presented by Matthews.’

The preceding for drawdown analysis for real gas
flow should be very accurate. In many cases, conventional
plotting of pressure or pressure squared leads to plots
which are not linear, although the m(p) plot is linear ~
as it should be. One example given in the Appendix
yields reasonable straight lines for both m(p) and pressure-
squared plotting (Fig. 2), although a plot of drawdown
pressure vs log time has considerable curvature. In other
cases, it has been observed that the pressure-log time
plot and m(p)-log time plots are excellent straight lines,
although a pressure-squared plot shows considerable curva-
ture. In all cases tried to date, the m(p)-log time plot has
produced reasonable straight lines.

Often, it is necessary to analyze a variable-rate draw-
down—such as Russell’s’ two-rate test, or to account for
wellbore storage effects.” This requires superposition of
constant rates to generate variable-rate cases. Ref. 1
indicates that superposition can be used as a satisfactory
approximation in many cases.

An important question at this point is whether the
real gas flow solutions offer a worthwhile improvement
over existing gas flow solutions currently used in well
test analysis?

In addition to the problem of gas physical property
variation, use of the real gas flow solutions offers an
important improvement over existing gas flow theory
that is particularly important for low permeability for-
mations. That is, the solution in terms of real gas pseudo-
pressure includes the second-degree pressure gradient
term neglected by methods based on either liquid flow
or ideal gas flow solutions. In the case of Jow-permeability
gas well testing, current well test interpretation methods
can lead to formation capacity or deliverability estimates
that can be grossly in error. This can be illustrated by
comparison of flow capacity determinations by various
methods for a known capacity system. Excellent data
for testing various methods are available from Carter’s®
finite difference solutions for real gas flow.

Carter proposed a method to find flow capacity which
was based on a correlation with a dimensionless time
wherein viscosity and compressibility were point time
functions. Thus, it is possible to compare flow capacities
developed from his method, the liquid case analogy and
from the real gas flow analysis of this paper. Table 1
presents the comparison. As can be seen, Carter’s analysis
leads to flow capacities which are high, the liquid flow
analogy leads to flow capacities which are generally
low, while the real gas flow analysis based on m(p) values
leads to capacity estimates in very close agreement with
the actual values. Note particularly the good agreement
for the Solution 3 case for § md-ft capacity. The dif-
ference between Carter’s analysis and the liquid case

TABLE 1—COMPARISON OF FLOW CAPACITIES ESTIMATED FROM
DRAWDOWN DATA BY VARIOUS METHODS FOR
CARTER'S GAS FLOW SOLUTIONS {REF. 9)

Capacity (md-f1}
initial
Solution Fiow Rate  Pressure Liquid mip}
No. {Mct/D) {psia} True Carter's Case Analyses*
1 2,800 3,300 50 53 45.9 49.4
2 4,000 3,300 50 55.3 44.4 50.3
3 1,200 4,700 8 10.92 5.64 8.2

*The differences between the true and rea| gas mip) resuits are not believed
significont. Differences are less than normal error involved in toking siopes
of drawdown curves.
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analogy is a general result.’As flow approaches that of
an ideal gas, the two methods and the real gas flow
method yields the same answer.

BUILD-UP TESTING
The pertinent equations for analysis of pressure build-up
in terms of the real gas pseudo-pressure are:

u‘T
Flow capacity = m(p.,) = m(p.) ~ 5.792 X 10* %T“
t,+1
[log..,-i—.i] Ce e oL a
&
Or using standard conditions of 14.7 psia and 60F:
T t,+t
mps) =mp,) - 1,637 L_l1og, 7B g
kh Iy

Thus, a Horner-type’ plot of m(p.,;) should yield a
straight line of slope (—&), and formation flow capacity
can be determined from Egs. 13 or 14. The skin effect and
non-Darcy flow coefficient can be determined from Eq.
I5 if the real gas potential difference is replaced by
m(p,w.) = (p.,). The flow efficiency can be determined
from Eq. 17 if m(p.,) is substituted for m(p.,;). The
pressure drop across the skin can be computed from
Eq. 16 as for drawdown.

In a completely analogous manner to previous build-up
theory, Egs. 18 and 19 indicate that the plot of m(p.,)
can be extrapolated to infinite shut-in time (a time ratio
of unity) to yield m(p*). The Matthews-Brons-Hazebroek®
pressure correction charts can be used to correct the
extrapolated m({p*) value to m(p), the average real gas
potential, if the ordinates of their pressure correction
charts are changed to:

Y
2.303[-"-’-(-”~Lb_"’5£’.], L o)

and the dimensionless producing time is defined as:
0.000264 £z,
Buc,) A ’

where A is the drainage area in square feet.

If producing time ¢ is long enough that the drainage
radius is stabilized before the well is shut in, the best
approximation for pressure build-up is:

m(p.y) = m(B) — 5.792 x 1022 [logm(—-——__‘“"c‘)"" )]

(to)n = 21

khT,. 0.00266 k¢,
(22)

The slope of a plot of m(p.,) vs log,, 15 yields the flow
capacity, while the m(p) can be read on the straight line at
a build-up time ¢, of:

_ d(uc,).r’
ts hours = m . . . . . . . . . (23)

This is analogous to the Dietz" method for liquid flow.

BACK-PRESSURE TEST ANALYSIS

Application of the preceding to back-pressure test anal-
ysis is straightforward, but several features deserve men-
tion. First, Eq. 4 provides an excellent match to both
short-time isochronal flow tests and stabilized flow tests.
The skin effect and the non-Darcy flow constant can
be obtained from short-time isochronal flow testing if a
single drawdown or build-up is available to obtain the




flow capacity kh. Once this is done, r, can be placed
equal to 0.472 r., and either Egs. 4 or 12 used to generate

a plot of log,, [m(p)—m(p.)] vs log q.

This is analogous to the familiar back-pressure curve.
The m(p) curve has many of the characteristics of a
normal back-pressure curve, but there are some important
differences, also. At low rates, the non-Darcy term Dq
will be negligible and the slope of the curve will be
unity. At high values of flow rate, non-Darcy flow may
become important and the slope of the curve will ap-
proach 2 (n value of 0.5) in a fashion similar to that
described by Carter er al” However, the m{p) back-
pressure curve is only slightly sensitive to static pressure
level, because only the constant D depends upon pressure
through dependence upon gas viscosity (Swift and Kiel").
Thus, a single, stabilized back-pressure curve in terms
of the real gas pseudo-pressure difference can be used to
generate an entire family of back-pressure curves in terms
of pressure squared—or used in terms of m(p) with the
gas materials balance to provide a simple means of fore-
casting gas well performance.

AVERAGE GAS PROPERTIES

Current engineering practices in the analysis of gas
well tests involves evaluation of an equivalent liquid flow
system (Matthews’), or modification of expressions for
fiow of an ideal gas (Tracy’ or Carter’). Matthews rec-
ommended that gas properties be evaluated at an arithmetic
average pressure, while Carter found empirically that
evaluation of physical properties at an average pressure
equal to the square root of the average of squared pres-
sures gave reasonable agreement with real gas flow solu-
tions. One important result of the present study is that
use of the real gas m(p) leads to a solution for the proper
average value for gas physical properties. For example.
it is not uncommon to assume that gas vsicosity and
gas law deviation factor can be regarded as constant
at some average value for the flow region. For a bounded
system, this would lead to the flow equation:

khT (0" = p.)
0.472r.
[

g = 1987 % 107 24

P T(Mz)nvc In

where we have neglected skin effect and non-Darcy
flow. If Eq. 24 is compared with Eq. 12, the resuit is:

;: = Dus’

=mp) — mp.) . . . . (25
(IJ'Z)A\';:
or
= P .
W2os = - (26)

m(p) — m(p..,)

A similar result will hold if pressures are expressed in
terms of p, rather than p. Carter’ suggested the use of an
equation similar to Eq. 26 for determination of average
properties. Since many gas reservoir flow tests can be
analyzed by current theory, Eq. 26 may be of much
use. Note however that the (u2)., would be used only in
determination of flow capacity from the usual equation—
not in determination of dimensionless times. Dimension-
less times should still be evaluated with physical properties
at the initial formation pressure before production.

If Matthew's liquid case analogy is used, an average
value of (uB,) is required for flow capacity determination.
A liquid flow analogy to Eq. 12 is:

kh(2) (p—p.)

= ¥ 107 27
a= 1987 > 10 0472 roire] GD
Comparison of Eqgs. 12 and 27 leads to:
2(p—p.) _ T. (mip)—mip. )l
= R -1
(#Bﬂ)nv: p..T
or
2 .,,T(—"' we
(4B e = —2e PP (29)

T.. [m(p)—m(p.)l

Again, the average value of viscosity-formation volume
factor product would be used in determination of flow
capacity, not in determination of dimensionless times.
Extension of the averages to the transient period is
obvious in view of Eq. 4.

It should be emphasized that the liquid case approxi-
mation recommended by Matthews, and Tracy's method
of gas well build-up analysis, will give excellent results
in many cases where pressure drawdown is not large
and permeability is high enough that second-degree pres-
sure gradients are not important. Nevertheless. it is rec-
ommended that a real gas flow analysis is useful, even
in this case, to determine that the current approximate
methods are applicable. In any event, it is likely that
the real gas flow methods outlined in this paper will be
found simpler in application than older methods once a
master plot of m(p) vs p is prepared for any given
reservoir. This results mainly because it is no longer
necessary to square pressures for plotting, and gas physical
properties appear only in dimensionless times. An ad-
ditional benefit is that gas properties are always evaluated
at known pressures in the real gas flow method.

CONCLUSIONS

1. As a result of a change of variable called the real
gas pseudo-pressure, it is possible to write approximate
solutions for the production of real gases from ideal
radial systems, which are analogous to the Aronofsky-
Jenkins ideal gas flow solutions.

2. The approximate solutions for transient flow of a
real gas using the real gas pseudo-pressure leads to
methods for interpreting pressure drawdown and build-up
tests which are similar to current methods, except that
gas physical properties either do not appear in the engi-
neering equations or appear at known pressures. Use of
the real gas flow analysis indicates there are many well
tests which can be analyzed with current procedures, but
there are likely to be many others where current pro-
cedures are in error.

3. The real gas flow approximation can be used t0
establish proper average values of physical properties
for current procedures.

Finally, it is emphasized that the real gas pseudo-
pressure concept is principally a computing device. Re-
sults of back-pressure, build-up and drawdown tests can be
converted from m(p) solutions to solutions in terms of
pressure or pressure squared to provide familiar infor-
mation and displays.

NOMENCLATURE

il

A = drainage area, sq ft
B = formation volume factor, res vol/std vol
b

= slope of build-up or drawdown plot, psi‘/cp-
cycle
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¢ = compressibility psi”’
D = non-Darcy flow constant, (Mscf/ D)}
G, = cumulative gas produced, scf
h = net formation thickness
J = productivity index, (Mscf/D)/unit potential dif-
ference
k = effective permeability
m(p) = real gas pseudo-pressure (Eq. 2) psi‘/cp
P = pressure, psi
polty) = van Everdingen-Hurst dimensionless pressure
drop
q = gas rate, Mscf/D
r = radial location
s = van Everdingen-Hurst skin effect, dimensionless
s’ = apparent skin effect, dimensionless
S, = fractional gas saturation
T = temperature. °R
t = time, hours
z = real gas law deviation factor, dimensionless
(pv=nzRT)
¢ = total porosity, fraction pore volume
p = viscosity of gas, cp
SUBSCRIPTS AND SUPERSCRIPTS
D = dimensionless
d = drainage
e = exterior boundary
& = gas
i = initial
1 hr = one hour on straight line
m = base
- = superbar, average
sc = standard conditions of pressure and temperature
sf = sand face
t = total
w = well, inner boundary
wf = well flowing

wp = producing before shut-in
wd = shut-in well

* = extrapolated
avg = average

]
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APPENDIX
DRAWDOWN ANALYSIS EXAMPLE

An isochronal flow test is performed on a gas well
at two different rates. Given the reservoir data and fluid
properties below, determine the flow capacity, skin effect
and non-Darcy flow coefficient for this well. The well

is completed with tubing-annulus packer.

Reservoir and Gas Data

p. = 2,300 psia

h= 10 ft

r. = 0.5 ft

r. = 2,980 ft (640-acre spacing)
T = 130F

¢ = 0.1 fr BV

S, = 77 per cent PV

Gas Properties

p(psia) z Viscosity (cp)
400 0.95 0.0117
800 0.90 0.0125
1,200 0.86 0.0132
1,600 0.81 0.0146
2,000 0.80 0.0163
2,400 0.81 0.0180

Drawdown Data

Flow No. | Flow No. 2
Flowing Time (g=1,600 Mscf/D) (g==3.200 Mscf/D)

(hours) P.s (psia) P (psia)
0.232 1,855 1,105
0.4 1,836 1,020
0.6 1,814 954
0.8 1,806 906
1.0 1,797 860
2.0 1,758 700
4.0 1,723 539
6.0 1,703 387

SOLUTION

It can be assumed that wellbore storage effects are
negligible, since the well is completed with a down-hole
packer. The first step is to find m(p) vs p for this gas.
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This can be done with the gas properties tabulated above
and Eq. 2 in the main text. The quantity 2 (p/uz) can
be calculated and plotted vs pressure, as shown below
and on Fig. 1. Integration can be performed in a tabu-
lar calculation by reading mid-point values of 2 (p/uz)
from the graph and multiplying by Ap. The computed
m(p), psi/cp, is also shown on Fig. 1. This curve can
be used for future tests with this well or other wells
producing the same gas at the same formation temperature.
Often, only gas gravity is available. In this case m(p)
can be found without integration from Ref. 1.

P 4 2p/uz) Mean Ap 2Up/uz) mip)

_ lpsial z {cp)  {psi/ep]  2(p/pz) (psi) (x4p) {psiZ/cp)
400 0.95 0.0117 71,975 35988 400 14.4X10° 14.4X10°
800 0.90 0.0125 142,222 107,099 400 42.9X10% 57.3X10°
1,200 0.86 0.0132 211,416 176,819 400 70.7X10% 128.0X10°
1,600 0.81 0.0146 270,590 241,003 400 96.5%10% 224.5X10°
2,000 0.80 0.0143 306,748 288,669 400 1155X10° 340.0Xx10°
2,400 0.81 0.0180 329,218 319,000 400 127.6X10° 467.6X10°

In the following, Flow 1 will be analyzed in detail
Results for Flow 2 will also be given to illustrate the
importance of a second flow test at a different rate.
Fig. 2 presents the drawdown data plotted in the con-
ventional manner, and in terms of the m(p.,).

The flow capacity for Flow 1 can be estimated from
Eq. 14 in the main text:

qT (1,600) (590)
kh = — = = 48. -ft.
1,637— 5 1,637 B33 % 109 48.4 md-f
The total of skin effect and non-Darcy flow resistance
can be estimated from Eq. 15.

m(p.) — m(p, )
- b
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- \\ ‘ bs-040%10° PSIZ/ns
NOA p2
3 - — .
mir,
Tl w! T
o A
x
& b=-32xi0% PSI2/CPS-n o
L2
o
w
o
2 d
2
&3
€
—~ p 2
o FLOW wh
g |NO.2
e be-076X108 psiZ/n _
S
a m(pﬁ)/
Ny
n_!
be-675%108 PSIZ/CPS-n
) |
ol ) 10

HOURS
Fic. 2—(p,,)* anp mip,,) vs Loc TIME FoR SampLE PROBLEM.

(435—-279) 10°

= l 16
s+ Dg 1.151[ R I0° 0g

4.84
T . = 0.657.
((0. 1) (0.0176) (0.00041) (0.77) (0.5)') +3 23]

The flow capacity determined from Flow 2 is 45.8
md-ft, and the skin effect plus non-Darcy flow com-
ponent is 1.36. Thus

Flow 1: s + Dq, = 0.657
Flow 2: s + Dg, = 1.36.

These two equations can be solved for ¢, = 1,600
Mscf/D, and g, = 3,200 Mscf/D to yield s = —0.03
and D = 4.39 X 10 (Mscf/D)". Thus, the skin effect
is negligible and all of the resistance near the well is
caused by non-Darcy flow.

The difference in flow capacities found above for the
two rates is not significant. This sample problem was
taken from two computer solutions by Carter” because it
provides a good example of an apparent skin effect
caused by non-Darcy flow. The true flow capacity used
by Carter in the solution was 50 md-ft. The difference
between flow capacities determined above and the true
value of 50 md-ft results because Carter approximated the
effect of non-Darcy flow as a constant pressure-squared
difference for his solutions. In real gas flow, a better
approximation would be a constant difference in mi(p).

The next step would be to substitute the values of
kh, s and D into Eq. 12 in the main text to provide a
general equation for generation of stabilized deliverability
curves. Fodek

115



