Page 1

Reservoarfluider og Strømning

Reservoir Fluids and Flow Course TPG 4145

Homework Problem 2

Handed Out: Jan. 30, 2017

Due Date: One week after handed out Hand in on ItsLearning as a single Excel file; one sheet for 1.1 and another sheet for 1.2. File Naming (mandatory!!!): LastName-Problem-1-Solution.xls

Problem 2.1 - Reservoir Classification - Gas or Oil?

Consider the reservoir Fig. 1 below. Due to geological events, the original reservoir (upper sketch) is faulted into three "fault blocks": H (high), M (middle) and L (low). The reservoir temperature and pressure increase with depth.

The total reservoir hydrocarbon fluid composition is the same in all blocks, z_i. However, one of the blocks is labeled an oil reservoir (RO), another a gas reservoir (RG), and the third one contains both oil and gas at initial reservoir conditions (RG+RO). To answer the following questions, use the p-T diagram given in Fig. 2.12 in the Phase Behavior Monograph.

Assume reservoir pressure of the middle fault block is 160°F and 2650 psia at mid-reservoir depth of 5300 ft. Temperature gradient is 0.02°F/ft and pressure gradient is 0.5 psi/ft for all three blocks.

- a. Come up with initial conditions (mid-reservoir depth, p_R, T_R) for the Low fault block (RG-only), assuming its maximum *liquid by volume* is 30% (from Fig. 2.12).
- b. Come up with initial conditions (mid-reservoir depth, p_R, T_R) for High fault block (RG+RO) assuming the volumetric percentage of the reservoir contains 50% "oil", V_{RO}/(V_{RG}+ V_{RO}).

Fig. 2.12—p-Tdiagram for a gas-condensate system (after Katz *et al.*⁵).

Problem 2.2 – Reservoir Fluid Composition

This problem refers to Page 6 of 11 of PVT Report given in Appendix D in the Phase Behavior Monograph. Solve the following questions using <u>Excel</u>.

- a. Reorder components in your Excel solution by normal boiling point, low to high.
- b. Compute the average molecular weight of the fluid using data given in table on Page 6 of PVT study.
- c. Calculate mole fractions (in mol-%) of each component from lab-measured mass (wt-%) fractions. Verify your results according to the lab table. Use Table A-1A (Appendix A) for component properties through n-C₅. Use Table 5.2 for C₆, and the numbers in the table below for C₇₊ (note: the three numbers (0.8142 | 42.1 | 190) are for C₇₊ (typographically misplaced).
- d. Lab measurement of C₇₊ molecular weight is often prone to uncertainty. Assume an uncertainty of 10%, using M_{C7+}=190 kg/kg-mole instead of the reported value, then repeat steps (a) and (b).
- e. Assuming a simplified surface process where C₅- components represent surface gas and C₆₊ components represent surface oil, calculate the gas-oil ratio in scf/STB (and Sm³/Sm³). Compare with the four two-stage GORs given by the lab on Page 5 of 11 (add together Separator and Stock Tank GOR values to get total for a given two-stage process, e.g. 875+134).

	Page 6 of 11*
	File RFL 1064
Company The California Co.	Data Sampled March 14, 1958
Well Central Oil Co. No. 5-2	County Smith
Field State Raleigh	State Mississippi

HYDROCARBON ANALYSIS OF RESERVOIR FLUID SAMPLE							
Component	wt%	mol%	Density at 60°F (g/cm ³)	°API at 60°F	Molecular Weight		
Nitrogen	0.18	0.51					
Methane	9.54	45.21					
Ethane	2.80	7.09					
Propane	2.67	4.61					
<i>iso</i> -butane	1.29	1.69					
<i>n</i> -butane	2.15	2.81					
<i>iso</i> –pentane	1.47	1.55					
<i>n</i> –pentane	1.91	2.01					
Hexanes	5.01	4.42					
Heavier	72.30	28.91					
Carbon Dioxide	0.68	1.19					
	100.00	100.00	0.8142	42.1	190		

Core Laboratories Inc. Reservoir Fluid Div.

P. L. Moses, Operations Supervisor