Page 1

Reservoarfluider og Strømning

Reservoir Fluids and Flow Course TPG 4145

Homework Problem 1

Handed Out: Jan. 19, 2016

Due Date: One week after handed out Hand in on ItsLearning as a single Excel file; one sheet for 1.1 and another sheet for 1.2. File Naming (mandatory!!!): LastName-Problem-1-Solution.xls

Problem 1.1 – Reservoir Classification – Gas or Oil?

This problem refers to an example given in class Jan. 14, 2016.

Consider the reservoir Fig. 1 below. Due to geological events, the original reservoir (upper sketch) is faulted into three "fault blocks": H (high), M (middle) and L (low). The reservoir temperature and pressure increase with depth.

The total reservoir hydrocarbon fluid composition is the same in all blocks, z_i. However, one of the blocks is labeled an oil reservoir (RO), another a gas reservoir (RG), and the third one contains both oil and gas at reservoir conditions (RG+RO). To answer the following questions, use the p-T diagram given in Fig. 2.12 in the Phase Behavior Monograph.

Assume reservoir pressure of the middle fault block is 160°F and 2650 psia at mid-reservoir depth of 5300 ft, temperature gradient is 0.02°F/ft and pressure gradient is 0.5 psi/ft.

- a. Come up with initial conditions (pR, TR) for High and Low reservoir fault blocks.
- b. For the two-phase reservoir, give the approximate value for the volumetric percentage of the reservoir containing oil, $V_{RO}/(V_{RG}+V_{RO})$.

Fig. 2.12—*p*-*T* diagram for a gas-condensate system (after Katz *et al.*⁵).

Problem 1.2 – Reservoir Fluid Composition

This problem refers to Table 6.4 in the Phase Behavior Monograph. Solve the following questions using <u>Excel</u>.

- a. Compute the average molecular weight of the fluid using data given in Table 6.4.
- b. Calculate mole fractions (in mol-%) of each component from lab-measured mass (wt-%) fractions. Verify your results according to Table 6.4. Use Table A-1A (Appendix A) for component properties through n-C₅. Use Table 5.2 for C₆, and Table 6.4 for C₇₊.
- c. Lab measurement of C₇₊ molecular weight is often prone to uncertainty. Assume an uncertainty of 10%, using M_{C7+}=196 kg/kg-mole instead of the Table 6.4 reported value, then repeat steps (a) and (b).

TABLE 6.4—WELLSTREAM (RESERVOIR-FLUID) COMPOSITION FOR GOOD OIL CO. WELL 4 BOTTOMHOLE OIL SAMPLE					
0			Density*		Molecular
Component	mol%	Wt%	(g/cm ³)	°API^	vveight
H ₂ S	Nil	Nil			
CO ₂	0.91	0.43			
N ₂	0.16	0.05			
Methane	36.47	6.24			
Ethane	9.67	3.10			
Propane	6.95	3.27			
<i>i</i> -butane	1.44	0.89			
<i>n</i> -butane	3.93	2.44			
<i>i</i> -pentane	1.44	1.11			
<i>n</i> -pentane	1.41	1.09			
Hexanes	4.33	3.97			
Heptanes plus	33.29	77.41	0.8515	34.5	218
Total	100.00	100.00			
*At 60°F.					