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EXAMPLE 2.3 continued
Table E2.3 Reservoir and Well Data for the Vik No. 1

Initial reservoir pressure 7055 psia
Initial oil FVF 1.5bbl/STB
Total pay thickness 80 ft
Average permeability 24 md
Initial oil viscosity 0.31cp
Bubble-point pressure ; 4800 psia
Wellbore radius (7-in. casing) 0.29 ft

Skin factor before acid treatment +18.5

Skin factor after-acid treatment —4.2

This section has discussed only the effect of steady-state or constant skin on the
pressure drawdown and production rate. A rate-dependent skin is discussed in the
following section. The physical aspects of the skin phenomenon are addressed in
chapter 3.

24

RATE-PRESSURE RELATION FOR GAS WELLS. Rawlins and Schellhardt (1936),
engineers from the U.S. Bureau of Mines, developed the classic backpressure
equation relating gas rate to flowing pressure:

g = C(pR* = puf)" (1.33)

The equation was developed after interpreting several hundred multirate gas well
tests. A linear trend was observed on a log—log plot of rate versus delta pressure-
squared, pg’ — p,.fz. At the time equation (1.33) was initially suggested, it was not
obvious why pressure-squared, instead of pressure, should be used. Nor was it
obvious why the exponent n was limited to a value between 0.5 and 1.0. Also
absent from the early pioneers’ work was an expression for C in terms of reservoir
rock and fluid properties (when n<1.0). Yet, even without theoretical
argumentation, the backpressure equation received immediate, widespread
acceptance and use by the gas industry.

Today we have a better understanding of the backpressure equation. We know
that pressure squared accounts for the pressure dependence of fluid properties
(1/pgB, or p/p,Z). The backpressure exponent n accounts for high-velocity flow
e.g., turbulence. (Note that n equals the reciprocal of the slope of the backpressure
straight line.) Although the constant C has yet to be expressed analytically in terms
of reservoir properties for cases other than n =1, we know that it accounts for
reservoir rock and fluid properties, flow geometry, and transient effects.

Several testing methods can be used to determine the backpressure relation for a
gas well. They involve flowing the well at several rates, measurmg flowing and
buildup pressures, and plotting the results as g, versus PR puf on log-log
paper. The common multirate sequences include the flow-after-flow, isochronal,
and modified isochronal tests. Example 1.7 (see chapter 1) illustrates the procedure
for determining n and C from a flow-after-flow multirate test. The procedures for
multirate testing are discussed in section 2.7. Here we shall only note that the
flow-after-flow test assumes that a stabilized, pseudosteady state is reached before
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changing from one rate to the next. In fact, C is not a constant unless stabilized
(pseudosteady-state) production exists. Isochronal tests can be at transient
conditions during flow periods, but it is mandatory that shut-in periods, which
separate flow periods, are of sufficient duration to reach static reservoir pressure
at the wellbore. Also, isochronal tests usually are followed immediately by an
extended flow period to determine the stabilized backpressure curve. Generally,
multirate tests (particularly the modified isochronal test) should be run with increas-
ing rates. Time required to reach stabilized flow varies from well to well. In
general, the higher the permeability, the less time it takes to reach stabilization. On
the log-log backpressure curve, a changing C is reflected by a gradual shift of the
straight line to the left. The classic paper on multirate testing by Cullender (1955)
reports multirate data that confirm this transient behavior of C. Cullender also
shows how important it is to account for the shifting backpressure curve during a
test of a slow-to-stabilize well.

The backpressure equation originated from field observations. This section will
show that, for the particular case of a low-pressure gas well with a backpressure
coefficient n =1, the equation matches the behavior predicted by Darcy’s law.
Lower values of n reflect deviations from Darcy’s law that affect and often
dominate calculations and interpretations of gas well production.

In section 2.1 we noted that Darcy’s law breaks down at high flow velocity. Many
models were suggested to replace or modify Darcy’s law for high-velocity flow.
Several models and their experimental background are discussed by Muskat (1937).
The most accepted model was proposed by Forchheimer in 1901:

dpldr = av + b\?, (2.36)

where a and b are constants and v = g/A is fluid velocity. Later work by Green and
Duwez (1951) and Cornell and Katz (1953) expressed equation (2.36) in terms of
fluid and rock properties

dp/dr =-(u/k)v + prz, (2.37)
where

v = gas viscosity,

p = gas density,

k = formation permeability,
8 = high velocity coefficient.

The high-velocity coefficient in equation (2.37) is a property of the formation rock
that accounts for the deviation from Darcy’s law. Equation (2.37) implies that two
rock parameters, permeability and the high-velocity coefficient, are needed to
express high-velocity flow in reservoirs.

The deviation from Darcy’s flow is more pronounced in gas wells than in oil
wells. Therefore, it is introduced here for the first time. Section 3.4 is dedicated
to high-velocity flow and expands the discussion beyond the short introduction in
this section.

In relation to the radial flow equation we should note two major differences
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between gas and undersaturated oil flow: (1) gas properties have a strong pressure
dependence at low and intermediate pressures, and (2) high-velocity effects are
exhibited by gas flow at relatively low rates. It is possible to account for these
phenomena in a gas radial flow model to establish inflow performance equations
valid for the entire range of reservoir pressure and flow velocity. The gas equations
are developed in terms of reservoir parameters and can be used for both production
predictions and data interpretation.
We start from Darcy’s law in differential form (eq. [2.4]),

b= (A) dp.

8\, / dr
Velocity can be expressed in terms of volumetric rate at standard conditions g, and
gas FVF, B, (= TZP,/pT,.):

_ qKBﬂ - ( q.lt ) (szu> .
Ve = 2mhr~ \2mhr pT, (2.38)

Substituting equation (2.38) in equation (2.4), separating variables (pressure p and
radius r), defining inner and outer boundaries, and performing some algebraic
manipulation and simple integration, the final expression for gas rate is

2mkhT, " p
%= Tpyen(rra) ™ 1, bz P (2.39)

Equations (2.38) and (2.39) presume that a set of consistent units has been used.
Equation (2.39), written in field units for pseudosteady-state conditions, is

0.703kh Px p
%= TlIn(r.Jre) — 0.75] < 2 [:, .z P (2:40)
where terms and their units are: g, (scf/D), k (md), £ (ft), r (ft), T (°R), p (psia),
and p, (cp). Standard conditions of 14.7 psia and 60°F (i.e., 520°R) are assumed in
the constant 0.703, as is Z =1 at standard conditions. The integral in equation
(2.40) represents the area under the curve of p/w,Z versus pressure. Figure 2.10
shows a typical plot of the gas pressure function p/p,Z.

The pressure function exhibits three distinct regions of behavior. At low
pressures, usually less than 2000 psia, the p/p,Z curve is linear, and intercepts at
the origin. This is equivalent to the observation that 1/, Z is essentially constant at
low pressures (see fig. 2.11). At pressures higher than about 3000 psia the pressure
function p/p,Z is nearly constant, showing some decrease at increasing pressures.
Between 2000 and 3000 psia the pressure function shows distinct curvature. In
ieview, the pressure function p/p,Z has three regions of behavior: low-pressure
linearity, intermediate-pressure curvature, and high-pressure flattening. We might
note that p/p,Z is directly proportional to 1/p.B,, where p/n,Z = [ps(TITs)]
(1/ugBg)-
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Figure 2.10 Gas pressure function.

The low-pressure behavior of p/p,Z results in a simple analytical solution to the
pressure integral in equation (2.40):

Pg 2 _ 2

P PR ow

2[ P gy PR Puf” 2.41)
Py Mg Z P PeZ

where pg is assumed to be less than about 2000 psia. As indicated in figure 2.11,
1/u,Z is essentially constant in the low-pressure region, and thus p, and Z can be
evaluated at any pressure. By convention, we usually evaluate w, and Z at pg. The
radial flow equation for gas at low pressures can now be written

0703 kh(pR = pu)
U= Ty Z[In(rJre) — 0.5+ 5]

(2.42)
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Figure 2.11 Low-pressure behavior of gas pressure function, p/p,Z, and 1/p.,z.

where skin s is defined as

s= 0.703kh
qg TP-gZ

(pwf'Z _owz) (243)

Recalling that p,/ indicates wellbore flowing pressure for an ideal well, the skin
factor in. Equation (2.43) is proportional to delta pressure squared, caused by

nonideal flow.
Using the Forchheimer modification to Darcy’s law for high-velocity flow,

equation (2.42) can be written

_ 0.703kh(pe = pf)
9= Ty, Z[In(r./ry) — 0.75 + 5 + Dqg)

(2.44)

where D is proportional to constant b in the Forchheimer equation (eq. [2.36]).
The term Dg, is commonly referred to as rate-dependent skin and is discussed in
detail in section 3.4.
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Although equations (2.42) and (2.44) appear similar except for the term Dgq,,
they represent two different flow models. While the first one expresses the linear
rate—pressure relationship of Darcy’s law, the second one expresses the
Forchheimer model. This similarity in form is very useful. It allows for all equations
that are developed with Darcy’s law to be modified to account for high-velocity
effects by merely adding a rate-dependent skin term. Example 2.4 illustrates the
use of the radial flow equation for gas wells producing at low reservoir pressures.

EXAMPLE 2.4 INFLOW PERFORMANCE CALCULATIONS FOR A GAS WELL
PRODUCING AT LOW RESERVOIR PRESSURES

A two-rate drawdown/buildup test was run on a new gas discovery well in Kansas,
the Medicine Lodge No. 1. For the first buildup following an eight-hour flow period
at 6.4 MMscf/D, Horner analysis indicated a permeability-thickness (kh) of
790 md-ft and a skin of +3.62. The second buildup followed a 12-hour flow period
at 8.7MMscf/D, and Horner analysis indicated a kh of 815md-ft and a skin of
+4.63. Other reservoir data included initial reservoir pressure of 1623 psia at a
temperature of 128°F. From standard gas property correlations, the initial gas
viscosity and Z-factor are 0.0134cp and 0.879, respectively.

Determine the high-velocity flow term D, used in the radial flow equation (2.44).
What is the steady-state skin factor (i.e., when rate equals zero)? Write the IPR
equation using the pressure-squared, low-reservoir pressure assumptions. Assume
an average kh of 800 md-ft and In(r./r,)—0.75=7.

SOLUTION

First, we determine the rate-dependent skin coefficient D using skins reported from
buildup test analysis. However, since a different k# is reported for each test, it is
necessary to calculate an average kh and then correct the skin accordingly.
Assuming stabilized flow, the corrected test skin s, is found from the actual test
skin s, from the relation

(kh)1est _ (kh)avg
In(r./r,) —0.75+s,  In(r./r,) —0.75 + s,

In this example we assume In(r./r,)—0.75=7 and (kh).e=800md-ft. The
corrected test skin for the first test with rate of 6.4 MMscf/D is

790 800
T+3.62 T+s,

or
S = (800/790) (7 +3.62) — 7

=3.75.
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EXAMPLE 2.4 continued

CORRECTED TEST SKIN FACTOR, S;

0 | 1 1 1 1 1 1 - 1
8
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GAS RATE qg, MMscf/D

9 10

Figure E2.4a Rate-dependent skin factor in the Medicine Lodge No. 1 gas well.

For the second test with rate of 8.7 MMscf/D, corrected skin is

825 800
7+4.63 T+s,

or
Sie = (800/815) (7 + 4.63) — 7
=4.42.

A plot of corrected test skin versus gas rate is shown in figure E2.4a. The slope of
the straight line gives a value of D =2.91 x 1077 (scf/D)~!. The intercept at zero
rate equals the steady-state skin, s = +1.89, indicating slight formation damage.

A common error is to plot test skin versus rate without making the kh correction.
Had this been done for this example the steady-state skin would be under-
estimated, rate-dependent skin would be overestimated, and AOF would be
underestimated by 1.0 MMscf/D (corresponding to about $700,000 per year for a
gas price of $2/Mscf). It must be emphasized that the skin-versus-rate plot is not valid
if kh associated with each skin is different.
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EXAMPLE 2.4 continued
Table E2.4 Calculated Gas IPR for the Medicine Lodge No. 1 Well

Duf 173 - Pus’ e
(psia) (psia”) (MMscf/D)
0 2.63 x 10° 15.8 (AOF)

500 2.38 x 10° 14.7
750 2.07 x 10° 13.2

1000 1.63 x 10° 11.0

1250 1.07 x 10° 7.78

1500 3.84 x 10° 3.18

1550 2.32x10° 1.99

The stabilized IPR equation for the Medicine Lodge No. 1 is found by
substituting reservoir and test data in equation (2.44).

0.703(800) (1623 - p,,/*)
128 + 460) (0.0134) (0.879)[7 + 1.89 + 2.91 X 107 7q,]

qg"(

_glg (263%10°p, )
(889 +2.91x 107 'g,)

or

2.63x 10° - p,./*
T TP (1095 +3.58 X 10~

9e )
giving A =0.1095 and B=3.58 x 10™". Solving the quadratic equation for rate,
Bq’+ Ag,— Ap*=0

[A°+4BAp*)" - A
9= 2B

_ [(0.1095)* + 4(3.58 x 107%)(2.63 X 10° — p,,/*)]"* — 0.1095
- 2(3.58 x 107°%)

_[0.0120 + 1.43 x 107%(2.63 x 10° — p,,*)]"* — 0.1095
- 7.16 x 107°

Table E2.4 gives a few rates and flowing pressures, which are plotted in figure
E2.4b on log-log paper. From about 5 MMscf/D to the maximum rate (AOF) of
16 MMscf/D., the IPR curve is a straight line on the log-log plot. The slope is 1.89,
corresponding to a backpressure exponent of n =0.766.
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EXAMPLE 2.4 continued
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Figure E2.4b Backpressure curve of the Medicine Lodge No. 1 gas well.

At high pressures, usually greater than 3000 to 3500 psia, the pressure function
p/weZ is nearly constant. The pressure integral in equation (2.40) is solved

analytically to give

P

kP P
2 —“—=dp=2—"—F = Duwf)s
p..} I-LgZ /4 p‘gz(pR p f)

(2.45)
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where p/p,Z is evaluated at any pressure between p..s and pg, although we must
emphasize that both pressures must be higher than about 3000 psia. The resulting
IPR equation for gas wells producing at high flowing and static pressures is

_ 1.406kh(p/peZ) (PR = Puyf) .
9= Tlin(r./r,) — 0.75 + s + D]

(2.46)

The high-pressure approximation of gaswell IPR is not commonly used by
engineers. We mention it only to bring attention to the similarity between high-
pressure gas and undersaturated oil flow.

The pressure-squared approach for low-pressure gas wells and the straight-line
IPR for high-pressure gas wells are only valid in the regions of pressure for which
they are designed. A more general approach to account for the pressure
dependence of gas properties is to perform the integration of p/p,Z (eq. [2.40])
for the entire range of pressures applicable to a given well. This amounts to
calculating the area under the p/u,Z curve from p,r to pg.

Figure 2.12 illustrates a useful property of integration that is applied to solve the
integral in practical engineering problems. Let us define the area from zero
pressure (vacuum) to any other pressure as A(p). It can be shown that the area
under the p/pgZ curve from p, to p, is merely A(p;) — A(p;), where p,>p;. A
special name, pseudopressure, designated m(p), has been given to the quantity
2A(p) (Al-Hussainy, et. al. 1966). That is,

P
m(p) =2 fn (p/wgZ)dp, (2.47)

where m(p) is the analog to pressure or pressure squared in equation (2.41). The
differential pseudopressure, Am(p)=m(pg) —m(p.s), represents the driving
force or potential moving gas toward the well. Mathematically, Am(p) is given by

Pr
Am(p)=2) (plpgZ)dp

Pwr

PR Pwf
=2 J" (PlugZ)dp=2] = (plueZ)dp =m(pg) = m(pus)- (2.48)

Substituting equation (2.48) in the radial flow equation (eq. [2.40]) and including
the effect of high-velocity flow, the most general gas IPR for stabilized flow is

__0.703khk[m(pg) = m(puy)]
% T[n(re/r,) = 0.75 + s + Dyg] (2.49)
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The relation for skin is then written

5= g'ZI—“le‘ﬁ[rn(p..f’) — m(pup)]. 2.50)

where m(p,,') corresponds to the ideal wellbore flowing pressure p,s’, and m(p.)
corresponds to the actual (nonzero skin) flowing pressure p,,s.

Two practical problems are usually associated with the pseudopressure function
m(p): (1) It must be calculated by tabulating p, p, and Z, plotting p/nZ, and
integrating graphically or numerically. (2) The magnitude of m(p) is much larger
than pressure (usually on the order of 100 times pressure-squared, or
m[p] = 100p*). These problems can be overcome with some practice, as is shown in
example 2.5.

EXAMPLE 2.5 CALCULATING THE GAS PSEUDOPRESSURE FUNCTION m(p)

This example shows a simple procedure for calculating the gas pseudopressure
function m(p). The integral in equation (2.47) can usually be approximated with
sufficient accuracy from the trapezoid rule of integration. This is perhaps best
illustrated by a simple procedure summarized in table E2.5. Each step corresponds
to a column in the table.

Basic Data:

[1] p :pressure (psia)
[2] Z : gas compressibility factor
[3] m,: gas viscosity (cp)

Calculate:

[4] p/weZ : pressure function (psia/cp)

[5] (p/mgZ).. - average for two successive entries (psia/cp)
[6] Ap : pressure difference for two successive entries (psi)
[7] 2(p/weZ)wAp : incremental pseudopressure (psiZ/cp)
[8] m(p) : the sum of products in column (7) (psi*/cp)

Table E2.5 tabulates the eight quantities. The calculated pseudopressure function
is plotted in figure E2.5.
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EXAMPLE 2.5 continued

Table E2.5 Calculation Procedure for Gas Pseudopressure, m(p)

p z Mg plpZ (plneZ)e AP 2([s]i6))  m(p)=Sum [7]
(1] (2] 3] [4] [5] [6] (7 (8]
0 0

147 0998  0.0127 1,160 580*° 147 1.70E4*> 1.70 E4

400 0960  0.0130 32,051 16,606 385 128E7 128 E7

800 0925 0.0135 64,064 48,058 400 384E7 5.12E7
1200 0.895 0.0143 93,761 78,913 400 631E7 114 E8
1600  0.873 0.0152 120,576 107,169 400 857E7  2.00 E8
2000 0860 0.0162 143,554 132,065 400 1.06 E8  3.06 E8
2250 0.856 0.0169 155,533 149,544 250 748 E7  3.81 E8
2500  0.857 0.0177 164,811 160,172 250 8.01 E7  4.61 E8
2750 0.860 0.0185 172,847 168,829 250 844 E7  5.45E8
3000 0867 0.0193 179,285 176,066 250 8.80E7  6.33 E8
3150 0872 0.0197 183,370 181,328 150 5.44E7 6.83ES8

*Column [5] lists the arithmetic average of the pressure function p/p.Z in the pressure

interval Ap.
®1.70 E4 is the notation for 1.70 X 10%.
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Figure E2.5 Pseudopressure function versus pressure.
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An important characteristic of the pseudopressure function is that it is only
necessary to calculate gas pseudopressure one time for a given field. Afterwards, it
can apply to all wells in a gas field throughout the production life. Example 2.6
illustrates the use of the pseudopressure function to predict the IPR of a gas well.

EXAMPLE 2.6 GASIPR CALCULATED USING PRESSURE-SQUARED AND
PSEUDOPRESSURE METHODS

The 0.61-gravity gas considered in example 2.5 applies to the Crawford gas
reservoir in northwestern Nebraska. The Crawford No. 1 produces from the
Mississippi Chat at a depth of about 7040 ft. Initial reservoir pressure was 3150 psia,
and the maximum temperature recorded during the well test was 148°F. The SP,
gamma ray, and induction logs indicate a net pay of about 22 ft. The Chat is a clean
sand with similar quality throughout the Crawford field, and usually requiries a
small acid treatment to remove formation damage. Core and test permeabilities for
the No. 1 well averaged about 20md. Local graduate students from a state
university studied the effect of high-velocity flow on several Chat core samples.
They correlated high-velocity coefficient and permeability data and concluded that
a D term of 1.5 x 107®1/scf/D could be used for the Crawford No. 1 well.

The well could not be tested at high rates because no pipeline hookup was
available and the No. 1 well was located on the edge of the Crawford city limits, in a
residential area. Before drilling more wells, the operator requests an estimation of
the well’s deliverability. Make the following calculations using (a) the pressure-
squared gas IPR (eq. [2.44]) and (b) the pseudopressure gas IPR.

1. Calculate and plot the gas IPR on Cartesian paper.
2. Determine the AOF.

SOLUTION

Since the spacing and estimated drainage area are not known, In(r,/r,,) — 0.75 will
be assumed equal to 7.0. Since the formation sand face has been cleaned with acid,
steady-state skin of zero is assumed. Using the available rock and fluid properties
the two IPR equations are

_ 0.703(20) (22) (3150% - p,,?)
~ (148 + 460 (0.0197) (0.872) (7 + 1.5 x 10-°gy)

qg

=29.6(9.92 X 10° - p,/)/(7 + 1.5 X 10~°g,)
or, when rearranged

9.92 X 106 - p, 2

—A+B
4, s

=0.236+5.07 x 1073,
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EXAMPLE 2.6 continued
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Figure E2.6 IPR curves of the Crawford No. 1 gas well using pseudopressure and pressure-squared
approaches.

yielding the g, solution

_[A*+4BApY" - A
%= 2B

_ [0.0557 +2.03 x 1077(9.92 x 10° ~ p,,/*)]** — 0.236
- 1.01x 1077

Using the pseudopressure IPR, gas rate is expressed by

_0.703(20) (22)[6.88 X 10° = m(p,,/)]
9= (148 + 460) (7 + 1.5 x 10~°g,)

=0.509[6.88 X 10° — m(p,.)}/(7 + 1.5 x 107°,)
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EXAMPLE 2.6 continued
Table E2.6 Calculation of Gas IPR Curves for the Crawford No. 1 Well

q, (MMscf/D) for IPR

) 2% Pof’ m(py) PRESSURE- PSEUDO-
(psia) (psia®) (psi/cp) SQUARED PRESSURE
0 0.00 0.00 11.7 13.1
1200 1.44 E6 1.14 E8 10.8 11.8
1600 2.56 E6 2.00 E8 9.96 10.7
2000 4.00 E6 3.06 E8 8.74 9.28
2500 6.25 E6 4.61 E8 6.50 6.74
2750 7.56 E6 5.45 E8 4.89 5.01
3000 9.00 E6 6.33 E8 2.53 2.57

or by the quadratic equation with A =13.8 and B =2.95x 107° with the direct
solution

_[190 +1.18 X 1077[6.88 X 10° — m( Pup)l’? = 13.8
%= 590 10

Table E2.6 tabulates the results of the calculations needed to plot the two IPR
curves as in figure E2.6. The plot indicates that IPR calculated by the pressure-
squared approach is more conservative than IPR calculated by the pseudopressure
approach.

Concerning the practical application of the radial flow equation including rate-
dependent skin Dgq,., equation (2.44) can also be written as a quadratic equation
(Forchheimer model)

PR* = puf = Aqe+ Bg,’, (2.51)
where

A= b—%%% (In(r./r,)—=0.75 +s] (2.52)
and

B= ozﬁifh D. (2.53)

The term p,Z can be evaluated at any pressure as long as pg <2000 psia.
For high-pressure gas wells with limited drawdown, pressure can be used instead
of pressure-squared, in which case the Forchheimer quadratic equation is written

Pr— Pur=Aqg+ Bq’, (2.54)
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where
‘ T (2
A=T707%h (f—) [In(r./r,) —0.75 + 5] (2.55)
and
__T ﬂ) :
B=Ta07%n ( o) P (2.56)

Note that w,Z is evaluated at p,, = (pr + pup)/2.
If pseudopressure m(p) is used instead of pressure-squared, the rate equation is
written

m(pgr) = m(puf) = Aqe+ Bgg’, (2.57)
where
A=~—=L—(in(r/r.) = 0.75 +s] 2.58
= 0.703kK el M) =108 (2.58)
and
B=—L_p (2.59)
0.703kh " : :

The most practical solution of the Forchheimer equation is to plot (pg’ — p.s°)/q,
versus gy, (Pr = Puf)/qg Versus g, or [m(pg) — m(p.s)}/q, versus g, on linear
coordinate paper. The result is a straight line with intercept A and slope B. Figure
2.13 illustrates such a plot, using pressure-squared for a low-pressure gas well. The
slope B in figure 2.13 indicates the significance of high-velocity effect on the
productivity of the well. A large slope implies large rate-dependent skin. The
intercept A is related to steady-state skin factor.

If rate needs to be written in terms of flowing pressure, the quadratic equations
can be solved as follows:

_[A*+4BApY - A i

4= 55 (2.60)
_[A’+4BAp]"°-A
4= 5B (2.61)
and
A2+ 4BAm(p)]"’ - A
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where Ap? = pg? — pus*, Ap = pr — pus, and Am(p) = m(pg) — m(p.s). Obviously,
values of A and B will be different, depending on whether pressure, pressure-
squared, or pseudopressure is used.

Example 2.7 illustrates the linearized plot of test data for a gas well. The constant
D in the rate dependent skin factor is related to the slope B of the linear plot in
figure 2.13 by equations (2.53), (2.56), or (2.59). By combining equations (2.37)
and (2.44) the constant is related also to rock properties,

kh
D=2222x 10-”‘"’—"'}1—2 B. (2.63)

Kglwilp

EXAMPLE 2.7 LINEAR PLOT OF GASWELL TEST DATA

The Cullender No. 5 gas well produces from a shallow, low-pressure, highly
productive reservoir. The well has been tested by a multirate test and the results are
listed in table E2.7. One-hour duration of each flow period was enough to reach
stabilization of flowing wellbore pressure. In fact, it was observed that pressures
stabilized almost instantaneously after each rate change.

The three high flow rates (March 30, 1950) were obtained by flow-after-flow
sequence without shut-in between flow periods. The three low flow rates were
performed at three consecutive days; each flow period started from shut-in
conditions. Determine the IPR and evaluate the high-velocity-flow effects in the
well.

SOLUTION

The reservoir did not exhibit appreciable depletion during the test period and
reservoir pressure was essentially constant. Downhole pressures listed in table E2.7
were calculated from wellhead pressures using vertical flow correlations, which
probably explains the spread in static reservoir pressures. The IPR will be
established by using both the backpressure equation and the quadratic equation.

The log-log backpressure plot in figure E2.7a gives a straight line which defines a
backpressure exponent n=1/slope=0.55. The backpressure coefficient is
calculated from the curve as

C = 8.737 X 10%(11270)°%° = 49,468 scf/D/psi’.
The backpressure equation then is

4o =49.468(pi> — pu)"*,

and the absolute open-flow is 39.8 MMscf/D.

A Cartesian plot of Ap?/q, versus g, (fig. E2.7b) gives a straight line (except for a
small deviation and the low-rate point). The intercept of the line is




151

EXAMPLE 2.7 continued

105~ /
L /.
/.
& 104 >
L C
» -
Q L
- L [ J
N
L od -
£
a o
]
~N
x 3
a 10°F ]
102 ) s 2o 4l ) ) ; 1l ) ) 3 g3 a1
0.1 1.0 10 100

GAS RATE, qg: MMscf/D

Figure E2.7a Stabilized backpressure curve of the Cullender No. 5 gas well. Reprinted by
permission of the SPE-AIME from Cullender 1955. © 1955 SPE-AIME.

psia®
scf/D

A =0.00028

The slope is

a2
_ _apsia‘/scf/D
B =126 x10""Gr #/D

or, when expressed in scf/D,

_ _jopsia’/scf/D

B=1.26x10 D

The low n value and the high B value indicate large rate-dependent skin.
Reservoir data were not presented by Cullender (1955) and it is therefore

difficult to quantify steady-state skin s and rate-dependent skin coefficient D. It is

certain, however, that rate-dependent pressure losses dictate reservoir inflow

performance.
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EXAMPLE 2.7 continued

0.002 |~

SLOPE B = 0.000126

INTERCEPT A = 0.00028

1 1

1 J 1

0 10 20
GAS RATE, dg, MMscf/D
Figure E2.7b Stabilized quadratic IPR curve of the Cullender No. 5 gas well.
Table E2.7 Test Data of Cullender No. 5 Gas Well (March-April 1950)
Pr At P 9 P =pw’  Ap7g,

Date psia hr psia MMscf/D psia? psia®/scf/D
March 30 439.0 1 425.97 8.373 11270 0.001340
March 30 439.0 1 411.69 12.484 25250 0.001860
March 30 439.0 1 390.08 16.817 40600 0.002410
April 3 439.9 1 439.80 0.570 90 0.000158
April 4 439.6 1 438.45 2.231 1010 0.000453
April 5 439.8 1 434.86 4.841 4320 0.000892




153

The high velocity coefficient B(1/ft) can be approximated by an empirical
correlation (discussed later in section 3.4)

B=2.73 x 10"k, 11045, (2.64)

where k, is the permeability used to evaluate B, equal to the effective gas
permeability near the wellbore. In equation (2.63), A, is the formation thickness
open to flow. If the near-wellbore region is not damaged or stimulated with acid,
the D term is essentially independent of permeability, since B is approximately
proportional to 1/k and D is proportional to Bk. Without an estimate of
permeability, D can be written (with B = 1.69 x 10'%k):

h
D=375x 1078 —E . (2.65
2
Kelwhyp

The slope and intercept of the cartesian plot together with equations (2.63) and
(2.49) provide a useful mean for interpreting multirate well test data in terms of
formation properties and well completion data. Example 2.8 applies the quadratic
rate equation to interpret test data.

EXAMPLE 2.8 HIGH-PRESSURE GASWELL MULTIRATE TEST
INTERPRETATION

The McLeod No. 1A (McLeod 1983) is a high-pressure gas well producing from
the Worth sandstone. During the first year of production, the average reservoir
pressure dropped from 12,315psia to 5,565 psia. Six tests have been run and
relevant data are given in table E2.8a. General reservoir and well data are given in
table E2.8b.

Use the quadratic equation to develop an inflow performance relation for the
McLeod No. 1A at pressures encountered during the second year of production
(approximately 5000 psia average reservoir pressure).

Table E2.8a Test Data for the McLeod No. 1A Well

1 2 3 4 5 6

¢ (MMscf/D) 7.152 8.080 7.739 5.178 4.850 4.895
P (psia) 12315 10,177 8,625 6,365 5,815 5,565
Puy” (psia) 11,458 9,070 7,691 5,915 5,260 5,082
Pav (psia) 11,887 9,624 8,158 6,140 5,538 5,324
Z at p,, 155 138 1.26 1.10 1.05 1.04
w (cp) at po, - 0.0380  0.0340 00310  0.0265  0.0245  0.0240
(Ap/q5) (Par/nZ) 24.2 28.1 25.2 18.3 24.6 21.0

* Bottomhole pressures calculated from surface pressures.
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EXAMPLE 2.8 continued
Table E2.8b Reservoir and Well Data for the McLeod No. 1A Well

Formation permeability® k 200 md
Net pay h 261t
Estimated drainage radius r, 13201t
Wellbore radius r,, 0.375ft
Gas gravity v, 0.635
Formation temperature Tx ’ 245°F

*From sidewall core data.

SOLUTION

The quadratic equation (2.51) can be written

PR 'ow) ( Pav ) ,
=) (£2)=a"+ Bg,,
( qdg l"'gz 9s

where
A’ =—L—(In(r./r,) - 0.75 +
= 1207k In(relr) = 0.75 +5]

and

re L
B =Ta07mn >
Note that p, and Z are evaluated at p,,, where

Pav=(Pr+ Pus)/2.

This form of normalizing pressure accounts for severe depletion and large changes
in pressure-dependent properties during the period of testing. In other words, since
the term p,,/uZ shows considerable variation as a result of depletion, it has been
eliminated from the expressions of the slope and the intercept. A plot of [(Ap/
4g) (Pav/pgZ)] versus g, is shown in figure E2.8.

The reservoir has high permeability and the drainage volume appears to be
limited, based on the rapid depletion indicated by the test data in table E2.8a. We
can assume stabilized flow for all five tests. Two interpretations of the data are
possible.

The first interpretation uses rates 1, 2, 3, and 4, which define a straight line with
slope B’ =3.01 X 107 and intercept A’ = 2.7. Based on k= 200(26) = 5200 md-ft
and In(r./r,) — 0.75 = In(1320/0.375) — 0.75 = 7.42, we calculate

D= B'1.407kh/T

=3.01 x 1075(1.407) (5200)/(460 + 245)
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Figure E2.8 Quadratic IPR plot of test data of the McLeod No. 1 gas well.
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EXAMPLE 2.8 continued
=3.12x 1073(scf/D)™!
and
s=A"1.407kh/T — [In(r,/r,) — 0.75]
= 2.7(1.407) (5200)/(460 + 245) — 7.42
= +20.6.

The second interpretation uses rates 1, 3, and 6 to define a straight line with slope
B’ =1.49 x 107 and intercept A’ = 13.6, yielding

D =1.49 x 107%(1.407) (5200)/(460 + 245)
=1.55% 10‘5(scf/D)‘l
and

s = 13.6(1.407) (5200)/(460 + 245) — 8.2
= +134.

The two interpretations are considerably different. Table E2.8c indicates the
actual difference and its impact on stabilized well performance.

The conclusion about the test data is that (1) a damaged zone appears to restrict
flow near the wellbore, and (2) the high-velocity flow is exacerbated by the
damaged permeability. Also, the test data show considerable scatter, indicating
changing conditions near the wellbore through the first year of production, and/or
bad data. Part of the scatter may result from calculating bottomhole pressures from
wellhead measurements. McLeod used the test data to substantiate a high-velocity-
flow model for the perforations. His model is discussed in chapter 3 (section 3.5)
and in example 3.8.

Table E2.8¢c Results of Two Interpretations of Test Data for the McLeod No. 1A

Total Skin s+ Dg
(well flowing pressure)

s =+20.6, s =+134,
(MMscf/D) D=3.12x10"% D=155%x10"°
2 82.2 (4921)° 164.0 (4849)
4 144.6 (4732) .195.0 (4644)
6 207.0 (4434) 226.0 (4384)
8 269.4 (4027) 257.0 (4071)
10 331.8 (3511) 288.0 (3703)

*pg = 5000 psia, (p../1gZ) =220,000, or 1/p,Z =0.0227 cp™'.
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Comparing equation (2.42) with the backpressure equation, we can write an
expression for C (stabilized) in terms of reservoir properties for the case of n=1:

4e= C(PR* = Puf)s (2.66)
where
C 0.703kh 2.67)

= TugZ[In(r./r,) — 0.75 +5]

When applied for a high-pressure gas well,

g =C(Pr— Pwf), (2.68)
where
c 1.407p,, kh (2.69)

= T Z[In(r,/r,) — 0.75 +s]

with p,Z evaluated at p,,. In terms of the pseudopressure function,

q; = C[m(pr) — m(pws)], (2.70)
where
c 0.703kh @7)

= T(in(r./r,) —0.75 + 5] .

Equations (2.66) through (2.71) apply to stabilized flow when the Dg, term is
small and can be neglected; Dg, « [In(r,/r,) —0.75 + s]. At high rates, or when
Dgq, has a relatively large effect, the Dg, term dominates the skin and the resulting
low-pressure gas equation (eq. [2.44]) becomes

0.703/(’1(pR2 - pwfz) 0.5
9=

TgZD (2.72)
or
gg= C(pr" — Pu)">, (2.73)
where
_ 0.703kR|%>
C= [TngD] . (2.74)

Similar expressions for C can also be written for pressure and pseudopressure when
Dg, dominates the flow equation. Equations (2.66) through (2.74) apply for the
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two limiting conditions of inflow equations; pure Darcy flow (D=0, n=1) and
completely turbulent flow (D =, n=0.5).

A generalized expression for the backpressure equation that is valid at the two
limiting conditions and approximate for the range 0.5 < n < 1.0 is, for low-pressure
gas,

ge=C(Pr* = Pu)" (1.33)
where

_ (0.703kh)" )
€= TaZ) D in(riir,) — 0.75 + 577 (2.75)
For high-pressure gas wells,
g = C(pr—Pup)", (2.76)
where

_ (1.407p, kh)" )
= T2y D" Iin(rlre) 075 + 5P @77)
Using the pseudopressure function,
g = Clm(pg) = m(pup))", 2.78)
where

n

C (0.703kh) (2.79)

= T D In(rr,) - 0.75 + sP* 1

Tek, Grove, and Poettman (1957) published alternative expressions for the
backpressure constant C if n<1, based on theoretical arguments put forth by
Houpeurt (1953). Their work is not widely used by the industry because of a
somewhat complicated procedure for determining C. We have found the relations
presented here accurate enough for practical applications. Example 2.9 shows the
use of equations (1.33) and (2.75) for a gas well in the Hugoton field in Texas.

EXAMPLE 2:9 STABILIZED MULTIRATE TEST ANALYSIS OF THE FREE NO. 4
WELL, HUGOTON FIELD, TEXAS

The Free No. 4 is a low-pressure gas well in the Texas Hugoton field. Cullender
[Gas Well No. 1] (1955) and Tek et al. (1957) analyzed test data on the Free No. 4
obtained from 1944 to 1946. Table E2.9a gives relevant reservoir and well data.
Using the approximate relation for backpressure constant C in equation (2.75),
compare the calculated value with the field constant determined from a 24-hour test
(table E2.9b).




EXAMPLE 2.9 continued
Table E2.92 Reservoir and Well Data for the Free No. 4 Well
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Net pay thickness h* 1201t
Permeability k° 30md
Reservoir temperature T 90°F
Initial gas viscosity ., 0.012¢p
Initial Z-factor Z 0.925
Initial total compressibility c,; 0.0016 1/psi
Gas gravity v, 0.712
Wellbore radius 7, 0.292ft
Skin factor s° -3.2
Backpressure exponent n° 0.867
Porosity. ¢ 0.07
“The zone was completed open hole with an acid treatment.
®Based on evaluation of all the Cullender data.
Table E2.9b 24-hour Test Data for the Free No. 4 Well

Pr Pus e
Test Reference (psia) (psia) (MMscf/D) Test C
Cullender
10-03-44 435.2 302.8 9.900 467.1
10-24-44 436.8 390.0 4.440 467.9
12-11-45 394.7 375.8 1.947 478.5
Tek et al.” 424.0 357.9 5.165 423.2

" Last of four 24-hour rates in a flow after flow sequence.

SOLUTION

Constant C is given by equation (2.75) as

_ [0.703kh/Tp.Z]" ‘
D"™"[in(r./r,,) — 0.75 + s~

In section 2.7 it is shown that the transient drainage radius is calculated from

equation (2.135) as

re=0.024[ kt/dpic,]>.

For 24-hour isochronal flow periods the drainage radius is
r.=0.024{(30) (24)/(0.07)(0.012) (0.0016)]"*

= 555ft.
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EXAMPLE 2.9 continued
This yields

In(r./r.) — 3.2 = In(550/0.292) — 3.2
=43

From equation (2.63)

D=2222x 10-18W_kh3_2
Helwhyp
1 (0.712) (30) (120) (2.73 x 101 (30~ 11045y
=2.222%x10 18(
X (0.012)(0.292) (1202)
=7.19x 1078,

Substituting the values of r, and D in equation (2.75) gives

_ [(0.703)(30) (120)/(550) (0.012)(0.925)]*¢7

¢ (7.19 x 10_3)0-133(4‘3)0.734

= 568

The 24-hour rate—pressure data given by Cullender and by Tek et al. give C values
that range from 423 to 479. The calculated C is higher, although it is a good
approximation. A permeability of 30 md has been used here, even though Tek et al.
report k=46.9md from a buildup test. The 30md value was determined from
analysis of all the transient data given by Cullender (see example 2.21). Since the
Tek et al. analysis uses calculated bottomhole pressures and the buildup follows a
four-point flow-after-flow sequence (24 hours each), the accuracy of their analysis
can be argued. The calculated C = 568 represents the backpressure equation at the
end of the 24-hour flow period. Example 2.21 shows that the C value in this well
will continue to decrease until pseudosteady state is reached (after 21 days) and C
stabilizes.

2.5

RATE-PRESSURE RELATION FOR SATURATED OIL WELLS. Thus far we have
considered the flow of undersaturated oil and gas, both of which are considered
homogeneous (single-phase) systems. Most oil wells, however, produce both gas
and oil from the reservoir. The most typical two-phase gas/oil system is the solution
gas drive reservoir. Gas that is initially dissolved in the oil at reservoir conditions
evolves continuously as pressure drops below the bubble point. The free gas pushes
the oil toward producing wells as it seeks to occupy more of the pore volume for
expansion. After a sufficient gas saturation has developed in the formation the free




