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THE PLANE-WAVE REFLECTION AND
TRANSMISSION RESPONSE OF A VERTICALLY
INHOMOGENEOUS ACOUSTIC MEDIUM

BJORN URSIN

INTRODUCTION

A number of results are known for the normal-incidence plane-wave reflection and
transmission response of a stack of homogeneous fluid layers (Goupillaud 1961;
Kunetz and d’Erceville 1962; Sherwood and Trorey 1965; Claerbout 1968; O’Doherty
and Anstey 1971; Koehler and Taner 1977; Robinson and Treitel 1977, 1978). Other
results have been derived for normal-incidence plane waves in a vertically inhomo-
geneous fluid with continuous reflectivity function (Foster 1975; Gjevik, Nilsen and
Heyen 1976; Resnick, Lerche, and Shuey 1985). Different inverse methods for the 1D
wave equation were compared by Ursin and Berteussen (1986). Ursin (1983) extended
many of the results for the forward problem to elastic and electromagnetic waves in
general layered media where the parameters are continuous functions of depth in each
layer. A number of simplifications can be made for acoustic waves, since the reflection
and transmission responses are scalars, in contrast to the general case where they are
square matrices.

Acoustic wave propagation is considered in a horizontally layered medium
consisting of a stack of inhomogeneous layers bounded by horizontal interfaces. The
density and propagation velocity are continuous functions of depth in each layer.
The acoustic wave equation is transformed into an equation for up- and downgoing
waves with proper boundary conditions at the interfaces between the layers (Claerbout
1976; Ursin 1984). By neglecting the interaction between the up- and downgoing waves
a zero-order WKB approximation is obtained (Bremmer 1951). A first-order WKB
approximation of the upgoing wavefield is then obtained by using the zero-order WKB
approximation for the downgoing wavefield. These WKB approximations have beel&v%
applied to migration problems by Ursin (1984) and Robinson (1986).

Two propagation invariant forms are used to derive a number of useful relations
between the reflection and transmission response of a stack of inhomogeneous layers
bounded by two half-spaces and by a free surface and a half-space. These propagation
invariants have been derived by Kennett, Kerry and Woodhouse (1978) for elastic P—
SV waves and Ursin (1983) for elastic and electromagnetic waves. For a layered
medium bounded by two half-spaces and evanescent waves in both half-spaces the
reflection and transmission responses are real. They can therefore be evaluated by finite
integrals as shown by Tygel and Hubral (1986) for the reflection response of a stack of
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homogeneous layers. With a propagating wave in the top half-space and an evanescent
wave in the lower half-space, the downward reflection response has magnitude one.
This result was derived by Fokkema and Ziolkowski (1985) and termed the critical
reflection theorem. It was also derived by Ursin (1983) for elastic and electromagnetic
waves.

The spectral function of a vertically inhomogeneous medium is the downward
energy flux due to an impulsive source at the top of the first layer. Robinson and Treitel
(1977, 1978) defined the spectral function for plane waves at normal incidence in a
medium consisting of homogeneous layers of equal travel time. Ferber (1987) then
derived the spectral function for plane P-S¥ waves at non-normal incidence in a
medium consisting of homogeneous layers, using the z-transform approach of Frasier
(1970). Ursin (1987) derived this and other results for elastic and electromagnetic waves
in vertically inhomogeneous media.

When the first layer is bounded by a free surface, the expression for the spectral
function reduces to an identity given by Kunetz and d’Erceville (1962) and also by
Claerbout (1968) for plane waves at normal incidence. This result was extended by
Mendel (1980) to non-impulsive sources at normal incidence. Frasier (1970) derived an
expression for plane P-S} waves at non-normal incidence in a medium consisting of
homogeneous layers. Ursin (1983) derived this and other results for elastic and
electromagnetic waves in media consisting of vertically inhomogeneous layers.

The solution of the transformed wave equation can be found by computing the
propagator matrix (Gilbert and Backus 1966) from a set of linear differential equations
or by computing the upward and downward transmission and reflection responses
from a set of equations including a Riccati equation (Schelkunoff 1951; Brekhovskikh
1960; Reid 1972; Ursin 1983). The propagator matrix and its inverse will always exist,
and the elements are causal functions of time (for a given wave number). When the
transmission and reflection responses exist they are causal functions of time. By
considering the relationship between the propagator matrix and the reflection and
transmission response it is seen that the inverse of transmission responses always exist
and are causal functions of time, while the reflection responses are not generally
invertible. This result was derived by Sherwood and Trorey (1965) for vertically
travelling plane waves in a stack of homogeneous layers of equal travel time.

Ataninterface between two inhomogeneous layers (where there is a discontinuity in
the layer parameters) the boundary conditions require that the pressure and the vertical
displacement velocity are continuous. The interface conditions for the propagator
matrix for up- and downgoing waves are given as a matrix product. The interface
conditions for the reflection and transmission responsesare given by the Redheffer star
product (Redheffer 1961; Kennett 1974; Ursin 1983). By neglecting the quadratic term
in the Riccati equation and simplifying the interface conditions, an approximate
solution of the reflection and transmission responses can be obtained. For the 1D wave
equation with continuous reflectivity function the expression for the transmision
response can be further simplified to the generalized O’Doherty—Anstey (1971)
approximation derived by Resnick, Lerche and Shuey (1985).

The Riccati equation has been applied to the 1D inverse problem by Gjevik, Nilsen
and Heyen (1976) and to the inversion at acoustic waves at non-normal incidence by
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Nilsen and Gjevik (1978). In some inverse problems (Ursin and Berteussen 1986) it is of
interest to remove the effect of the top layers (layer stripping). This can be done by
solving a set of equations including a Riccati equation with proper interface conditions
to remove the effect of the interfaces.

. i

DECOMPOSITION OF AN ACOUSTIC WAVEFIELD INTO UP- AND
DowNGOING WAVES

We consider acoustic waves in a horizontally layered medium where the parameters
are functions of depth only. The equations of linear acoustics are (Pierce 1981,
Equation 1-5.3)

0
Vp=—p a—':+f (11.1a)
13p
6—25;+va—-0 (11.1b)

where vis the displacement velocity, pis the pressure, f is a volume force, p is the density
and c is the wave propagation velocity.
We shall apply the 3D Fourier transform

P((I), kls kl, X3) = Jj‘p(ta X1s X2, x3)

exp(iot —ik,x, —ik,x,)dt dx, dx, (11.2a)

with inverse transform

1
p(t, X1, X5, X3) =ijfP(w, ki ks, %3)

exp(—iwt+ik,x, +ik,x,) dw dk, dk,. (11.2b)

This Fourier transform is applied to Equation (11.1) which gives

0, p

arP7 . P | F,

v T 1 k2 o | Ly * K F, +k,F, (11.3)
o\t &) T pw

where kZ=k?+k3.
Now we drop the source term and write equation (11.3) as
éB
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0, p

1/1 k2
e

and B=(P,V;)" (T denotes transpose). The wavefield is decomposed into up- and
downgoing waves, denoted by U and D, by the linear transformation W= L~ !B where
W=(U,D)T,

(11.5)

—Z (11.6a)

(11.6b)

w .
k| s—c—, propagating waves

w
|k,| >—, evanescent waves.
¢

(The positive square root is always taken.)
From Equation (11.4) we obtain

oW [ —iks, O 1, -1
5;3-.-[ o ik ]W+y(x3)[_1’ JW (11.9)

where

) =35 g Z(55) | (11.10)
is the reflectivity function.

We consider a stack of inhomogeneous layers where p and ¢ are continuous
functions of x, within each layer. At an interface between two layers the boundary
conditions require the wave vector B to be continuous. For an interface at x5 = x,, we
must have L, W, =L_W_ were L_= L(x5,_) is evaluated above the interface, and
L, =L(x;;.) is evaluated beneath the interface (the x;-axis is pointing vertically
downwards). We therefore have

W,=Li'L_W._. (11.11)
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Equation (11.6) gives

LI'L_ =—;7: (11.12)

which can be written (Ursin 1983, Equation 33)

Tl_lla RUTEI

11.1
R,TyY, Tyt (11.13)

LI'L_=

where T, and Ry are the transmission and reflection coefficients for an upward
travelling incident wave at the interface.
Combining Equations (11.12) and (11.13) gives for a single interface

Z..__'Z+
Z . +Z,

27 .
Ty=—
V"Z_ +Z,

Let T, and R, be the transmission and reflection coefficients for a downward travelling
wave at the interface. By interchanging + and — we obtain

Ry= (11.14a)

(11.14b)

Z+"’
=—————————=-—-R .
Pz +Z_ v (11.140)
2Z,

D=m- (11.14d)

Note that
TDTU—RDRUzl' (11.15)

We also note that both the reflectivity function y(x;) and the reflection and
transmission coefficients are functions only of Z(x;). For a plane wave with
wavenumber k=(k,, k,, k;)" and direction m=(m,,m,, m;)T we have k=mw/c and:m’
=(sinfcos¢, sinfsing, cosf) where 6 is the dip angle and ¢ is the azimuth angle%w e
see that

_po _ pc
11.16
Tk " cosh ( )

where cosf=,/(1 —g*c?) and g=k,/w is the ray parameter. When Equation (11.16) is
used in equation (11.10) we obtain

0t ap 1 1 dc

=22 Y o= 11
nxs) 2 p 6x3+00529 c 0x4 (L17)
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The elements of the matrix L7'L_ in Equation (11.12) are functions of

Z, (pc)y cosb_

Z_ (pc)- cosb_ (L18)

When the source function in Equation (11.1) is independent of azimuth angle, the
pressure and displacement velocity depend only on depth x; and radial distance r=
(x?+x3%)%. In this case we may apply a Fourier transform with respect to time and a
Hankel transform with respect to radius (Sneddon 1972) to obtain the transformed
variable

[e ol o]

U(w, k,, x3)= j f ult, r, x3)J (k. r)yrexp(iot)dr dt. (11.19a)
—wl

The inverse transform is
1 o a0
u(t,r, x3)= 3 f f Ulw, k,, x3)J (k, )k, exp(—iwt)dk,dw. (11.19b)
~w J O

In Equation (11.1) we apply this transform with n =0 to the variables p and v;, and with
n=1 to v, (the radial component of the displacement velocity), and we obtain again
Equation (11.3) with the modified source term

¥ T
[F3, kF] . (11.20)

ipw

This result can also be obtained directly from Equation (11.3) by using the
relationship between the 2D Fourier transform and the Hankel transform (Bracewell
1978).

The initial downgoing wavefield from a point source can be derived from the
Sommerfield integral (Ursin 1983, Equation E13):

G(w)

D(w, k,, 0)= — o
3

(11.21)

were G(w) is the spectrum of the source signature. The measured response is often
assumed to be the upcoming wavefield u(t, r, x5 =0) with Fourier-Hankel transform
U(w, k,, 0).

The zero-order WKB approximation corresponds to neglecting the interaction
between the up- and downgoing waves. This gives the one-wa

o [U —iks;+y, O U
&:_D]"[o, ik3+y] [D] (11.22)

with boundary conditions (see Equations 11.11 and 11.13)

-
[ p] . (11.23)

The solution of these equations is the zero-order WKB approximation.
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Uo(xs) = UO)T(xs)exp| —i jx3k3(z)dz] (11.242)

0

-and

0

Dy(x3)=DO0)T(x;)exp ni jxj k3(z)dz] (11.24b)

where D(0) is given in Equation (11.21) and U(0) is the transformed recorded wavefield.
The factor

T(x3)=Z7*0)Z%x3) [] To'ZHcsi-)Z7 *(x34) (11.25)
0 <xa3p <x3
is due to the interfaces between the inhomogeneous layers. Here Ty, is the upward
transmission coefficient at the interface at x,.

We have just computed the up- and downgoing wavefield neglecting the interaction
between the two wavefields. A more accurate approximation can be obtained by using
the downgoing wavefield computed by the zero-order approximation, when the
upgoing wavefield is downward continued. The first-order WK B approximation of the
upgoing wavefield satisfies the equation

ou,

5—"2 “‘ik3U1 +’Y(X3)(U1_Do) ) (11.26)
X3

with interface condition
Ui(x3i+) =Ty [U; (¢34 =) + Ry Do(x 34 - ). (11.27)

The solution of these equations is found to be

Us(es)= T(xa)exp[—i f v ka(Z)dZ]{U(O)—D(O) f x’m(z)exp[iz j zks(e:)de]dz}
0 0 4]

= Uo(x5)— Dolx3) f n(z)exp[ _i2 f " ka(é)dé]dz (11.28)

z

where the generalized reflectivity function is

P1(x3) =7(x3)~ Z Ry d(x3 ’x3k?'

0 <x3;<x3

We sce that we have obtained an additional term due to the effect of the generalized
reflectivity function. This term corrects partly for the influence of the downgoing
wavefield on the upgoing wavefield.

PROPAGATION INVARIANTS
Let B, =[Py, ¥,]" and B,=[P,, V,]" be two solutions of Equation (11.4). The form
G=P,V,~V,P, (11.30)
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is then a constant not depending on x;. This is easily seen by taking the derivative of G
with respect to x; and using Equation (11.4).
For the transformed wavevectors W, =L~ ! B, we obtain that

2
G=2[U\D,~U,D,]

(11.31)

2 0, 11U,
2w Y o] [5]
is constant.
For lossless media the parameters p and ¢ are real. Then the form
=4[P*V,+V¥P,] (11.32)

is constant (the star denotes complex conjugate).

For equal wave vectors, B, = B,, the form H is the downward energy flux (sce
Foster 1975; Brekhovskikh 1960, p. 114).

For propagating waves (k, real) the matrix L is real, and we obtain that

1
H=—2?[D’{‘D2-U’{ U,] (11.33)
1 -1, 0]{U,
— TIJ* *
szLUT D1l [ 0, 1] [Dz]
with Z real. For evanescent waves (k; purely imaginary) we obtain that
H ——[U* D,—D¥U,]

1 0, 171U,
—— * N*
Z[UIDI:] [_1’ 0:| I:Dz]

and Z is now purely imaginary.

(11.34)

LAYERED MEDIUM BOUNDED BY TWO HALF-SPACES

We consider a sequence of inhomogeneous layers bounded by two homogeneous half-
spaces as shown in Fig. 11.1. An incident wave of strength 1 produces a reflected
upcoming wave R, and a transmitted downgoing wave T,. An upgoing wave of
strength 1 produces a reflected downgoing wave Ry and a transnggted upcoming wave
T,. Two propagation invariant forms G and H will be used to deriVe relations between
the reflection and transmission responses.

With W, as shown in Fig. 11.1a and W, as shown in Fig. 11.1b the form G has the

same value at the top and the bottom of the layers. This gives
U D

1 ..j 35

Zo Zy (11.35)

where Z, is Z(x;) evaluated at the top of the layers, and Zy is Z(x5) evaluated at the
bottom of the layers.
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Layered medium Layered medium
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Fig. 11.1. Reflection and transmission response of a layered medium bounded by two half-
spaces.

For a lossless medium and propagating waves in both half-spaces the form H in
Equation (11.33) is also constant. This gives

R}Ty THRy -
7 sl (11.36)

Combining the two last equations gives
R}Tp+THR,=0. (11.37)

With W, =W, as shown in Fig. 11.1a and propagating waves, H = constant gives
1 1
1—IR 2 — 2. .
_Zo[ IRp|*] ZN!TDl (11.38)

Similarly we obtain

1 1
‘Z‘;[1‘|R012]=ZfTui2- (11.39)

The last two equations express that the energy is constant.

For evanescent waves in both half-spaces and a lossless medium, H in Equation
(11.34) is constant at the top and the bottom of the layers. Then all the reflection and
transmission coefficients are real. Tygel and Hubral (1986) used the fact that R, is real
for evanescent waves in both half-spaces to compute a finite integral solution for the
point-source response of a stack of homogeneous layers. The same procedure’may
therefore also be applied to compute the reflection and transmission response of a stack
of inhomogeneous layers.

For propagating waves at the top of the layers and evanescent waves at the bottom
of the layers the following relations are obtained:

RET,=T%
IRpI*=1 (11.40)

z
Ry—R¥= —.Z—"HTU}2= —T*T,.
O
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The middle identity was derived by Fokkema and Ziolkowski (1985) for a stack of
homogeneous layers and termed the critical reflection theorem. Ursin (1983, Equation
86) derived a general version of Equation (11.40) for the case of elastic and
electromagnetic waves.

LAYERED MEDIUM BOUNDED BY A FREE SURFACE AND A HALF-SPACE

Next we consider a layered medium bounded by a free surface and a half-space as
shown in Fig. 11.2. The upward reflection coefficient at the free surface is —Rq. (Ro=1
is obtained from the boundary condition P=0 at the free surface.)

We consider an incident wave of strength 1 at the top of the layers as shown in
Fig. 11.2a. This results in a reflected upcoming wave R, (which subsequently produces
a downgoing wave — R, Rp) and a transmitted downgoing wave T, at the bottom of
the layers. We also consider an incident upcoming wave of strength 1 at the bottom of
the layers as shown in Fig. 11.2b. This results in a downgoing wave Ry and an upgoing
wave Ty (at the top of the layers) which subsequently results in a downgoing wave
—R, Ty

By equating the form G at the top and the bottom of the layers for W, as shown in
Fig. 11.2a and W, as shown in Fig. 11.2b we obtain

Ty _T

. 41
Zo Zy (11.41)

This result does not depend on the value of R.
For a lossless medium and propagating waves at the top and the bottom of the
layers the form H in Equation (11.33) is constant. This gives

l -

S T5R,

1 ~ -
Z_()'[_ROTU+((ROI2_1)RETU]=
1 2 F12 1= 2

(IRo|* = DITy[* =5—(IRy|*—1) (11.42)
Z, Zy

1 - - ~ 1 .
- [1 —RERE_RORD‘*'UROP— 1)|RD|2] =—| TD|2~
Z, Zy

a) b)

VT

Layered medium

/ TU \—ROTU

Layered medium

\%D /1 \&U
Fig. 11.2. Reflection and transmission response of a layered medium bounded by a free surface
and a half-space.
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For Wy = W, the form H in Equation (11.33) is equal to the downward energy flux. For
an impulsive source this is equal to the spectral function of the vertically inhomo-
geneous medium as defined by Robinson and Treitel (1977, 1978) who derived the last
equation in (11.42). Ferber (1987) extended this result to P-SV waves in a stack of
homogeneous elastic layers using the z-transform approach of Frasier (1970). Ursin
(1987) extended the set of equations (11.42) to elastic and electromagnetic waves in
vertically inhomogeneous media.

For a free surface Ry=1 and

To+TER,=0

IRy|*=1 (11.43)

- Zo I
I‘RB_ﬁD=“‘"TD]2= IyT3.
Zy

The last equation was derived by Kunetz and d’Erceville (1962) and also by Claerbout
(1968) for normal-incidence plane waves in a stack of homogeneous layers. Frasier
(1970) extended this expression to plane P-SV waves at non-normal incidence in a
stack of homogeneous elastic layers. Ursin (1983, Equation 134) derived the results in
Equation (11.43) for elastic and electromagnetic waves in vertically inhomogeneous
media. :

For propagating waves at the top of the layers and evanescent waves in the half-
space the form H in Equation (11.33) evaluated at the top of the layers is equal to the
form H in equation (11.34) evaluated at the top of the half-space. This gives

T3
Zy

1 -
Z[(IROIZ“ I)Rg Tv_Ro Tv]= -

1 1 -
Z(l—lRoiz)lT(JP:‘Z‘;(RU"Rm (11.44)
(IRo|*—1)|Rp|*—R¥ R —R,Rp+1=0.

For a free surface Ry=1 and Equation (11.44) gives that Ry is real, T is real (using
Equation 11.41), Ty, is purely imaginary (using Equation 11.41, and the fact that Z,, is
real and Zy is purely imaginary), and the real part of R, is equal to 0.5. .
In the case that the waves are evanescent at the top and the bottom of the layersthe
form H in Equation (11.34) is constant. This gives
T3

1 ~
Z[RgRB Tv”Roﬁﬁ Tu‘Tu]= *“Z*N“

o~ o~

1 1
?(Rg“Ro)lTUF:_’(RU“RE) (11.45)
0 N

(R§ — Ro)lﬁolz +R3 _ﬁnzo-

For a free surface R,=1 and all transmission and reflection coefficients are real.
The two types of reflection and transmission responses are related. It can be shown
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(Ursin 1983, Equation 149) that

(11.46)

The first equation was also derived by Koehler and Taner (1977) for normal-incidence
plane waves in a stack of homogeneous layers.

THE PROPAGATOR MATRIX AND THE REFLECTION AND
TRANSMISSION RESPONSES

The general solution of the inhomogeneous wave Equation (11.9) is found by
computing the 2 x 2 propagator matrix (Gilbert and Backus 1966) Q(x3, x5,) from

0Q | —iky+y, —y
- . 11.47
dxs [—v, 1k3+y]Q (1147)

with Q(x30, X30)=I. The elements Q,;, i, j=1,2, of the matrix Q exist and are causal
functions of time (Pierce, 1981, p. 43). The solution of the wave equation may also be
expressed in terms of the reflection and transmission responses if these exist. These do
not exist for channel waves and interface waves which cannot be decomposed into up-
and downgoing waves. The propagator matrix and its inverse are (Ursin 1983,
Equations 88 and 90)

‘Tl;19 —TI;IRD ]

| RyT5Y, Tp—RyT;'R, (11.48)

QX35> X30)=
and

Q(x30, X35)= (11.49)

[ Ty—RpTp 'Ry, RpTy!
| —T5 'Ry, ;'

The reflection and transmission responses are causal functions of time. From equations
(11.48) and (11.49) it is seen that the transmission responses are also invertible. The
reflection responses are not, in general, invertible. These results were derived by
Sherwood and Trorey (1965) for the 1D wave equation.

For an acoustic medium bounded by a free surface there exist similar equations
which relate the propagator matrix to the modified reflection and transmission
responses (Ursin 1983, Equations 136 and 138). From these it follows that also the
modified reflection and transmission responses are causal functions of time, and that
the modified transmission responses are invertible.
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The composition of two propagator matrices Q(x3, X30) and Q{x,y, x3) are given by
ordinary matrix multiplication:

Q(x3n, X30) = QX35 X3) QX3 X30)- (11.50)

The boundary conditions (11.11) must be taken into account at an interface between
two inhomogeneous layers:

Tk, Ry Tod
QX345 X30)= _RZZ o, ngl vk ]Q(X3k_, X30) (11.51)
The S matrix defined by
TD, RU~
S= 11.52
l:RD» TU__ ( )
relates the outgoing (scattered) waves to the incoming waves
D(XSN)] [D(xso)]
=8(X30, X . 11.53)
[U(xm (50330 Uiy (

The composition of two S matrices is given by Redheffer’s star product (Redheffer
1961). This composition rule was also derived by Kennett (1974).
The star product is defined by (Ursin 1983, Equation 93):

[Tn(xso’ X3x)  Ry(X30, x:m)]
Rp(x30, X3n),  TylX30, X35)

Tp(x30, X3) Tp(x3, X3n)
1 —Ry{x30, 3) Rp(x3, X35)’
Ty(x30, X3) Rp(x3, X35) Tp(X30, X3)
1 —Ry(x30, X3)Rp(x3, X3y)

Rp(x30, X3)+

3

Tp(x3, X35) Ry(x30, X3) Ty(X3, X35)
1 —Ry(x30, X3)Rp(x3, X3x)
Ty(x30, X3) Ty(x3, X3n)
1= Ry(x30, X3) Rp(x3, X3)

Ry(x3, x3x5) +
(11.54)

and denoted by

S(x30, X3n)=S(x30, X3)*S(x3, X3y)- (11.55)

THE RiccATi EQUATION

Synthetic seismograms may be computed by computing the reflection and transmis-
sion response of a layered medium. This is done by solving a set of differential equations
in the inhomogeneous layers and applying interface conditions (derived from the
boundary conditions of the acoustic equations) at the interfaces between the layers. The
general differential equations are given in Ursin (1983, Equation 105), and by replacing
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sA, F, and G with —ik,, y and —y this gives

o7y
0x5

0

0x3 (11.56)
T,

5———:(ik3 +9) Tp+yRyTp
X3

0R,,
=y T, T,
x5 Yiulp

=(ik;—~y) Ty+yRyTy

where Ty = Ty{x30, X3) and so on. The second equation is a scalar Riccati equation (also
derived by Schelkunoff 1951) which can be solved first. The other equations can then be
solved directly (assuming there are no interfaces between x5, and x,):

Ty(x30, X3)= Ty €Xp [j 3 [ik3(z)+7(2) (Ry(x30,2) — 1)] dz]

X

T'p(x30, X3)=Tpo €Xp [J 3 [ik3(2) +7(2) (Ry(x30,2) + 1)] dZ:]

X30

X3

Rp(x30,%3)=Rpg +j P2) Tp(x30, 2) T(X30, 2) dz.

X30

In the case that there is a homogeneous half-space above x,, the initial conditions are
TUO = TDO = 1 and RUO = RDO =0.
In the case that |Ry|? < 1 the Riccati equation in [11.56) can be approximated by

ORy .
L= i2kaRy=y (11.58)

with solution

Ry(x30, X3)= Ryo €Xp [Zi jn ki(z) dz] — J‘xs 1(z)exp [Zi Jh k(&) dé} dz.  (11.59)

x30 X30 z

The four equations in (11.56) are coupled at the interfaces between the inhomogeneous
layers, and the interface conditions are given by the star product. Let the S matrix be § _
above the interface at x;;; S, below the interface and S, for thesdnterface itself. Using
Equation (11.55) for S, =S_=*S, gives

S _I:TD+, RU+]
.
RD+7 TU+
TD_TDk R +TDkRU—-TUk
1—Ry-Rp/ % T1—Ry_Rp

Ty_RpTp- Ty-Ty
" 1-Ry_Rp’ 1—Ry_Ry

© (11.60)

R
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If [Ry_Rp,| <1 we can use the approximation

Tp-Tp, Ry +Ry_Tp Ty
Ry - +RpTp-Ty-, Ty Ty

in which multiple reflections involving interface number k have been neglected.
The approximate interface conditions (11.61) and the solutions in Equation (11.57)
give the approximate solution

Toswx)= 1 Toeexp| | (ks(d)+7(2) (Rolxsor 2)+ 1)) dz

X305 X3k <X3 X30

S~ (11.61)

X

Toxsox)= T1  Tuxexp| | (ks(@)+(z) (Ryser2)— 1)) dz

X30 S X3k <X3 X30

Rpl(x30,x3)= J Wz)+ Z Rpi 8(z—x3,)

X30S X3k <Z

[T ToTopexp(2|  (ko(@+Ro(@)de )dz

X30SX35;<2 X3g

The approximate interface conditions (11.61) and the approximate solution in
Equation (11.59) give the approximation

X3
Ry(x30, x3)= f Z Ry 8(z —x33) — y(2)
X30 L.X30%

X3k <X3

(11.63)
[T (Tp;Typexpl2i| ky(&)dé )de.

Z<x3;<x3 z

In the appendix it is shown that for plane waves at normal incidence, the first
equation in (11.62) can be simplified to an approximation derived by Resnick, Lerche
and Shuey (1985). By assuming homogeneous layers of equal travel time this can be
further simplified to the approximation derived by O’Doherty and Anstey (1971).

In inverse problems it is of interest to remove the effect of the top layers (layer
stripping). This can be done by computing S(x3, X3) for increasing x, and removing the
effect of the interfaces. From Ursin (1983, Equations 112 and 114) it follows that

’g%:(—iks“V'H’RD) Tp

Q_Zq= —ik3+y+yRp) Ty (11.64)

0x3

R ,
5-;32= —2ik;Rp+9(RE—~1)

E“VTDTU
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where T, = Tp(x3, x3y) and so on. Using the same notation as before the star product
S - S k * S + iS

Tp-, RU—:l 1—-RyRp .’ -
- (1165
[RD-, To- 17 | o ToRo:To _TouTu :

P 1—RyRp,’ 1—RyRp,

which, together with Equation (11.15), give

R

_b-TUk __R,,P-U-
s, = | [TRo-Ru 7 Y 14Ry- Ry, (11.66)
* TDkTUk TU-TDk

—R Ry
ot 8o 1+Ry-Ry’ 1+Rp Ry

In the case that |R,Rp,|<1 Equation (11.65) gives the approximate interface
conditions:

(11.67)

Neglecting the R% term in Equation (11.64) and using the approximate interface
conditions result in approximate formulae for layer stripping.

CONCLUSION

The equations of linear acoustics in a stack of vertically inhomogeneous layers were
transformed into a set of equations for up- and downgoing waves for which WKB
approximations were derived.

Two propagation invariant forms provided several useful relationships between the
reflection and transmission responses. These include a general proof of the critical
reflection theorem. The reflection and transmission responses can be computed by
finite integrals. \ 4

Synthetic seismograms may be computed from the propagator matrix by solving a
set of linear differential equations for each frequency and wavenumber or by solving a
set of differential equations including a Riccati equation for the reflection and
transmission responses. The interface conditions for the propagator matrix are given
by an ordinary matrix product, and for the reflection and transmission responses by the
star product.

Dropping the quadratic term in the Riccati equation and simplifying the interface
conditions resulted in explicit approximate solutions for the reflection and trans-
mission responses.

Layer stripping can be performed by solving a set of equations including a Riccati
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equation and applying the inverse star product at the interfaces between the
inhomogeneous layer.

APPENDIX

The O’Ddherty—Anstey Approximation

O’Doherty and Anstey (1971) derived an approximation for the downward transmis-
sion response of a stack of homogeneous layers for plane waves at normal incidence.
For normal incidence k; =w/c and Equation (11.62) gives

o (pc)(x3y) JF
Tp(x30, 3‘31\.!)_}(1—__-[1 Tox m
(A1L1)

X3N dZ X3N

o Z(—z7 exp . z) Ry(x3q,2)dz

exp| iw
30
The first factors represent transmission losses, and the first exponential factor is a delay.
The last exponential factor becomes

z dn

exp| — y(z)f & expl 2iw | — }dédz (A11.2)
X30 X30 :C(T})

when the approximation

X3 X3

Ry(x30,%3)= — y(z)exp| 2iw . E(?) dz

X30
is used. The expression in Equation (A11.2) is the approximation derived by Resnick,
Lerche and Shuey (1985).
For a stack of homogeneous layers, the approximation

(A1L.3)

N
v(Z)szO R0z —x3) (Al1.4)

is used in Equation (A11.2). Then the exponential can be written

N k k
exp -kzo Rp, zo Rpjexplio Y Az,
= = ~

m=j+1

(A1L.5)
N - k .
=exp —kzo Rp.exp (iwty) ‘ZO Rp;exp(—iwr)
= IS
where At,, =2(X3,,— X3, 1)/c,, is the two-way travel time in the mth layer, and
k
=) A, - (Al1.6)
m=1

is the two-way travel time to the interface at x5, (with t,=0). With equal travel time in
each layer (Ar,=At) Equation (A11.5) gives the same result as Equation (9) in
O’Doherty and Anstey (1971).
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