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Abstract

In an anisotropic medium, a normal-incidence wave is
multiply transmitted and reflected down to a reflector
where the phase velocity vector is parallel to the
interface normal. The ray code of the up-going wave
is equal to the ray code of the down-going wave
in reverse order. The geometrical spreading, KMAH
index and transmission and reflection coefficients of
the normal-incidence ray can be simply expressed
in terms of products or sums of the corresponding
quantities of the one-way normal and NIP waves. Here
we show that the amplitude of the ray-theoretic Green’s
function for the reflected wave also follow a similar
decomposition in terms of the amplitude of the Green’s
function of the NIP wave and the normal wave. We
use this property to propose three schemes for true-
amplitude post-stack depth migration in anisotropic
media where the image represents an estimate of
the zero-offset reflection coefficient. The first is a
map migration procedure in which selected primary
zero-offset reflections are converted into depth with
attached true amplitudes. The second is a ray-
based, Kirchhoff type full migration. Finally, a
wave equation continuation algorithm can be used to
reverse-propagate the recorded wavefield in a half-
velocity model with half the elastic constants and
double the density. The image is formed by taking
the reverse-propagated wavefield at time equal zero
followed by a geometrical spreading correction.

Introduction

A stacked seismic section is considered as an
approximation of a zero-offset seismic section. Each
trace is the result of a seismic experiment where the
source and receiver are located at the same surface
point. In the following, we restrict our considerations to
zero-offset reflections that can be formulated as normal
incidence rays, namely, each of them reflects at a normal
incidence point (NIP) and returns to the source/receiver
point following the same path. In anisotropic media
this can occur when the slowness vector is parallel to
the surface normal at the NIP interface. For a multiple
transmitted, reflected and converted wave this requires
that the ray code up is the ray code down in reverse order.
This includes the PP and SS primary reflections, but not

the PS converted wave reflection.

A stacked section is obtained by summing the traces in a
common-midpoint gather after they have been corrected
for normal moveout (NMO). This requires the knowledge of
the NMO or stacking velocity which for 3-D data are given
by a 2× 2 symmetric matrix (Ursin, 1982). Krey (1976)
and Chernyak and Gritsenko (1979) showed that this NMO
velocity matrix can be computed from the curvature of a
fictitious one-way wave that starts as a point source at the
NIP reflection point. This wave was called the NIP wave by
Hubral (1983).

For the purpose of migrating stacked data, Loewenthal
et al. (1976) introduced the exploding reflector model for
zero-offset primary reflections. This is another fictitious
experiment conducted in a fictitious medium with half the
velocity of the true medium. The sources are placed along
the reflector, and all sources are activated at the same
time set equal to zero. An equivalent description of the
exploding reflector model is that, in the vicinity of each point
of the reflector, a wave front with the same shape as the
reflector starts its way up and is recorded at the surface.
This one-way wave has been called the normal wave by
Hubral (1983). Iversen (2006) gave a complete review
of normal incidence reflections with many new results.
While Hubral (1983) considered wavefront curvature in
an isotropic medium, Iversen (2006) considered Green’s
functions in anisotropic elastic media for PP and SS
primary reflections expressed by asymptotic ray theory. In
particular, he obtained results for the relative geometrical
spreading and the KMAH index for the normal-incidence
reflected wave, the NIP wave and the normal wave.

In this paper we have three objectives. The first is to
simplify Iversen’s results by using flux-normalized reflection
and transmission coefficients instead of amplitude-
normalized ones. As a consequence, the product of the
reflection and transmission coefficients for the down-going
wave is equal to the corresponding product for the up-
going wave (Chapman, 1994). From this it follows that
the geometric ray approximation of the Green’s tensor of
the normal-incidence reflected ray can be expressed in
terms of Greens’s tensor of the reverse NIP wave and the
tensor response of the normal wave. We also compare
this decomposition to the standard decomposition of the
geometrical spreading and KMAH index at the reflecting
interface (Schleicher et al., 2001).

Map migration (Kleyn, 1977) is the transformation of a
two-way normal-incidence traveltime map into a reflecting
interface at depth, given the smooth parameters of the
elastic medium. Gjøystdal and Ursin (1981) extended this
to also estimating the medium parameters, given non-zero
offset traveltimes or stacking velocities. Gjøystdal et al.
(1984) proposed to use the normal wave to downward
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continue the curvature of the zero-offset reflection to obtain
the curvature of the interface. Our second objective is to
estimate the zero-offset reflection coefficient. By dynamic
ray tracing along normal-incidence rays, we compute
amplitude corrections which can be applied to the recorded
amplitudes to obtain an estimate of the normal-incidence
reflection coefficient at the depth interface.

True-amplitude post-stack migration in an isotropic medium
can be done by ray-based, Kirchhoff diffraction stack
algorithm with simple weights (Schleicher et al., 1993). We
give a new formula for post-stack in anisotropic media using
results from Ursin (2004).

Post-stack depth migration in an isotropic or anisotropic
medium is also done downward continuation of the
recorded data in a model with half the medium velocity
(Loewenthal, 1976; Gazdag and Sguazzero, 1984). An
estimate of the reflectivity is then obtained from the
reverse-propagated wavefield at time equal zero. In
the Appendix we show how to extend this scheme to
anisotropic media by using elastic parameters divided by
two and density multiplied by two. This will half the
phase and group velocities of the medium. This downward
continuation corresponds to downward continuation of the
normal wave, except for the doubling of the traveltime.
Therefore, there is an uncompensated part of the
geometrical spreading, which remains in the amplitude of
the migrated image. Our third objective is to estimate this
residual geometrical spreading correction. Following the
lines in Bleistein (1987) and Tygel et al. (1993), this can be
obtained by upon the use of a second Kirchhoff zero-offset
migration with a different weight.

Decomposition of Normal-Incidence Reflections

We consider an anisotropic elastic medium with a multiple
transmitted, reflected and converted wave which starts at
a source point, x, at the surface and is reflected back at a
point y at an interface with the slowness or phase velocity
parallel to the interface normal, and such that the ray code
for the up-going wave is the wave code for the down-
going wave in reverse order. Such wave, referred here
as normal-incidence reflected wave, comes back to the
source point x, which is a zero-offset point, see Figure 1.
Note that for heterogeneous media, even isotropic, one can
conceive reflected waves with coincident source/receiver
position which have not been reflected at normal incidence.
Reversing the direction of the incident leg, this would be the
situation of a multi-arrival path from the reflection point to
the coincident source-receiver point. Such waves are not
considered here.

In the following, we will work in the frequency domain. It
is instructive to introduce a few definitions. For any given
real trace, uR(x, t), at trace location, x, and time, t, we
consider the Fourier transform pair (see, e.g., Červený,
2001, Appendix )

UR(x,ω) =
∫ ∞

−∞
uR(x, t)eiωt dt (1)

and

uR(x, t) = Re
{

1
π

∫ ∞

0
UR(x,ω)e−iωt dω

}
. (2)

The geometric ray approximation of the Green’s function for
the reflected ray is, in the frequency domain, proportional

to the scalar response function (see the next section)

UR(x,y,x;ω) =
e−i π

2 κR eiωTR

LR
tU rN tD . (3)

In the above equation, ω is the circular frequency, TR =
TR(x,y,x) is the two-way traveltime, κR = κR(x,y,x) is the
KMAH index, rN = rN(y) is the normal-incidence reflection
coefficient at the reflection point NIP and tD = tD(y,x)
and tU = tU (x,y) are the product of the transmission and
reflection coefficients for the wave going up and down,
respectively. All the reflection and transmission coefficients
are normalized with respect to the energy flux normal to
each interface, and then the coefficients are reciprocal
(Chapman, 1994), so that

tD = ΠtDk = ΠtUk = tU . (4)

The relative geometrical spreading is

LR = LR(x,y,x) = |detQ2(x,y,x)|1/2 , (5)

where the 2×2 matrix Q2(x,y,x) is part of the two-way 4×4
ray propagator matrix (Červený, 2001; Chapman, 2004)

Π(x,y,x) =
(

Q1(x,y,x) Q2(x,y,x)
P1(x,y,x) P2(x,y,x)

)
. (6)

The reflected wave is schematically shown in Figure 2.

The NIP wave is a hypothetical wave that starts as a
point source of unit amplitude at the normal-incidence point
and propagates within the original medium towards the
given zero-offset surface location where it is recorded, see
Figure 3. The response function is (see equation 3)

UNIP(x,y;ω) =
e−i π

2 κNIP eiωTR/2

LNIP
tU , (7)

where the relative geometrical spreading factor, LNIP =
|detQNIP(x,y)|1/2, is computed from
(

QNIP(x,y)
PNIP(x,y)

)
=

(
Q1(x,y) Q2(x,y)
P1(x,y) P2(x,y)

)(
O
I

)
=

(
Q2(x,y)
P2(x,y)

)

(8)
and κNIP = κNIP(x,y) is the KMAH index for the NIP wave.
Here, the one-way upward ray propagator matrix (Červený,
2001; Chapman, 2004) is

Π(x,y) =
(

Q1(x,y) Q2(x,y)
P1(x,y) P2(x,y)

)
. (9)

A second hypothetical wave is the normal wave, which
originates at the reflecting surface with a wavefront
curvature of the interface at that point, see Figure 4.

We shall let the normal wave start with amplitude rN ,
the normal-incidence reflection coefficient, so that the
response function is

UN(x,y;ω) =
e−i π

2 κN eiωTR/2

LN
tU rN . (10)

The geometrical spreading, LN = |detQN(x,y)|1/2 is
computed from

(
QN(x,y)
PN(x,y)

)
=

(
Q1(x,y) Q2(x,y)
P1(x,y) P2(x,y)

)(
I

v−1(y)D(y)

)

=
(

Q1(x,y)+ v−1(y)Q2(x,y)D(y)
P1(x,y)+ v−1(y)P2(x,y)D(y)

)
, (11)
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Figure 1: (a) The ray path of a multiple transmitted, reflected and converted NIP path; (b) The reflected wave from a point
source, x, at the measurement surface. Also shown is the normal-incident-point, y, at the reflector; (c) The NIP wave starting
at the normal-incidence point, y, at the reflector and (d) The normal wave starting as wavefront that coincides with the reflector
in the vicinity of the normal-incident-point, y.

where v(y) is the phase velocity at the normal-incidence
point, D(y) is the 2× 2 curvature matrix of the reflector
with respect to the local tangential coordinates also at
the normal-incidence point and κN = κN(x,y) is the KMAH
index for the normal wave. Iversen (2006, equation 36) has
derived the ray-propagator matrix for the reflected wave

Π(x,y,x) =
(

2(QNIPPT
N + I)I∗ 2QNIPQT

NI∗

2PNIPPT
NI∗ (2PNIPQT

N − I)I∗

)
(12)

where QNIP = QNIP(x,y), PNIP = PNIP(x,y), I is the identity
matrix and I∗ = diag(1,−1). Comparison of equations 6
and 12, yields the important decomposition (Iversen, 2006,
equation 48)

Q2(x,y,x) = 2QNIP(x,y)QT
N(x,y)I∗, (13)

from which (Iversen, 2006, equations 49 and 60)

LR(x,y,x) = 2LNIP(x,y)LN(x,y) . (14)

and
κR(x,y,x) = κNIP(x,y)+κN(x,y). (15)

Combining equations 3, 7 and 10 with the two equations
above and the reciprocity relation for the upward and
downward transmission coefficients 4, gives the new
decomposition formula

UR(x,y,x;ω) = UNIP(x,y;ω)UN(x,y;ω)/2 . (16)

The above decomposition shows that the amplitude
response of the reflected wave is equal to the amplitude
response of the NIP wave times the amplitude response of
the normal wave divided by two.

Decomposition of the Green’s function

The geometric ray approximation of the Green’s function for
the zero-offset reflected wave is (see, e.g., Červený, 2001,
subsection 5.4.5 with a different notation)

GR
i j(x,y,x;ω) =

hi(x)UR(x,y,x;ω)h j(x)
4πρ(x)v(x)

, (17)

where hi(x) and h j(x) are the polarization vectors of the
up- and down-going wave, respectively, ρ(x) and v(x) are

the density and phase velocity at x, and UR(x,y,x) is the
amplitude given by equation 3.

The Green’s function for the wave from the point-source,
x at the surface to the normal-incidence-point, y, at the
reflector (the reverse NIP wave) is

GNIP
k j (y,x;ω) =

hk(y)UNIP(y,x;ω)h j(x)
4π[ρ(x)v(x)ρ(y)v(y)]1/2

, (18)

with analogous meanings for the quantities ρ , v, h j and
hk and where UNIP(y,x;ω) is given by equation 7. Note
that the amplitude function is reciprocal, which allows us to
interchange x and y in the expression for UNIP.

The tensor response (not a proper Green’s function) of the
normal wave can be written

GN
ik(x,y;ω) =

hi(x)UN(x,y;ω)hk(y)
4π[ρ(x)v(x)ρ(y)v(y)]1/2

, (19)

where UN(y,x;ω) is given by equation 10. Combining
equations 17, 18 and 19 and taking into account
equation 16, provides the decomposition formula

GR
i j(x,y,x;ω) = 2π ρ(y)v(y)GN

ik(x,y;ω)GNIP
k j (y,x;ω) , (20)

where there is a summation over the index k.

The Green’s function may also be expressed as a product
of the Green’s function from the surface to the reflection
point times a factor that takes into account the reflector and
times the Green’s function from the reflector to the surface.
For a normal-incidence reflected wave, this can be written
(Schleicher et al., 2001)

Gi j(x,y,x;ω)= 4π ρ(y)v(y)Gik(x,y;ω)Gk j(y,x;ω)
rN e−i π

2 κH

LH
,

(21)
where there again is a summation over k, and

LH =
|detH|1/2

cos χ
, (22)

with χ being the angle between the phase velocity (parallel
to the reflector normal) and group velocity vectors. The
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matrix H is defined by

Hi j = 2
∂ 2T (y,x)
∂σi∂σ j

, (23)

where σi, i = 1,2, are Cartesian coordinates on the tangent
plane to the reflector at the normal-incident point, y, taken
as the origin. The contribution to the KMAH index is

κH = 1−Sgn(H)/2 , (24)

where Sgn(H) is the signature of the (symmetric) matrix H,
which is equal to number of positive eigenvalues minus the
number of negative eigenvalues. We assume the matrix H
to be nonsingular, namely, detH 6= 0.

Comparison of equations 20 and 21 gives (see Iversen,
2006, equations 54 and 61)

LN = LNIPLH/2 and κN = κNIP +κH . (25)

This shows that the normal wave incorporates the influence
of the reflector on the reflected wave.

True Amplitude Depth Migration

We consider the depth migration of PP or SS zero-offset
primary reflections under the assumption of a smooth
background model. Moreover, we also assume that, by
adequate preprocessing, multiples have been attenuated
or removed and that, in the frequency domain, primary
reflections are reasonably represented as in equation 3.
In other words, the input zero-offset section approximately
consists of a superposition of primaries, other events being
considered as noise.

A discussion on the available approaches to obtain a
reliable zero-offset (stacked) section to implement the
migration procedures described below is beyond the scope
of the present paper. In this way, we assume that the
data have been reduced to a scalar recording of PP or
SS primary reflections, and that an adequate depth macro-
model is already available.

Based on the geometrical-spreading and KMAH
decomposition formulas 14 and 15, we can devise
the following three schemes for true-amplitude zero-offset
migration. The first scheme consists of map migration
of selected reflectors (see, e.g., Kleyn, 1977, Gjøystdal
and Ursin, 1981 and Gjøystdal et al., 1984) in which true
amplitudes (i.e., amplitudes corrected for geometrical
spreading) are attached. The second method is a pre-
stack depth migration based on ray tracing, like Kirchhoff
migration (Hubral et al, 1991) or inverse generalized Radon
Transform (Ursin, 2004). Finally, the recorded wavefield
may be downward continued in a half-velocity model
(Loewenthal, 1976; Gazdag and Sguazzero, 1984). This
requires an additional geometrical-spreading correction. A
quick description of the different algorithms is given below.

True-amplitude map migration

For a given reflector, we consider that the zero-offset,
normal-incidence traveltime, TR(x), as well as its amplitude,
UR(x;ω), have been estimated from the data. The
slowness vector, p(x), at any ZO trace location, x, can be
estimated by the first traveltime derivatives

pk(x) =
∂TR(x)

∂xk
. (26)

This provides the initial values for the normal-incidence
rays, which are traced downwards to half the total
traveltime, T (y,x) = TR(x)/2. The points y define the
reflector. The second derivatives of traveltime,

B jk(x) =
∂ 2TR(x)
∂x j∂xk

, (27)

may be used to downward continue the curvature of the
normal wave. This gives us an estimate of the curvature
matrix, D(y), of the reflector (Gjøystdal et al., 1984). An
interpolation scheme must then be used to construct the
reflecting interface, y3 = φ(y1,y2). In the ray tracing from
x to y along the normal-incidence ray, the geometrical-
spreading factors for the NIP-wave, LNIP(y,x) and the
normal wave, LN(y,x), as well as the corresponding KMAH
indexes, κNIP(y,x) and κN(y,x), have been computed.
Assuming that the product of transmission coefficients is
close to one, an estimate of the normal-incidence reflection
coefficient at the depth point y is

rN(y) = 2LNIP(y,x)LN(y,x)ei π
2 (κNIP(y,x)+κN(y,x))

×
{

1
π

∫ ∞

0
UR(x;ω)e−iω TR(x) dω

}
, (28)

Note that the picked traveltime, TR(x), represents the
traveltime, TR(x,y,x), that appears in equation 3.

Ray-based depth migration

A general form of a post-stack depth migration integral
based on ray tracing is the Kirchhoff or diffraction stack
migration. For a depth point, y, at a reflector, an estimate of
the normal-incidence reflection coefficient, rN(y), is given
by

rN(y)=
1

2π2

∫ ∞

0
dω iω

∫

Σ
dxUR(x;ω) w(y,x)e−i[2ω T (y,x)−κNIP(x,y)]

(29)
where UR(x;ω) is the recorded data in the frequency
domain, T (y,x), is the one-way traveltime along the ray
from the surface point, x, to the image point, y, and
κNIP(y,x) is the KMAH index and w(y,x) is a true-amplitude
weight. The integration is performed over all or part of the
data acquisition surface, Σ.

If the reflector dip is known, we can use equation 71 in
Ursin (2004), together with equation 4.34 in Burridge et al.
(1998), to derive the true-amplitude weight function

w(y,x) = 4
cosα(x)
cos χ(x)

cos χ(y)
cosα(y)

. (30)

Here, α(x) is the angle (group velocity) the ray makes with
the recording surface at x and χ(x) is the angle between
phase and group velocity at x. Also, α(y) is the angle
the ray (group velocity) and the normal at the reflecting
surface at y, and χ(y) is the angle between phase and
group velocity at y.

We observe that, when the ray from x to y is a normal-
incidence ray, namely when x is the stationary point
associated with y, the angles α(y) and χ(y) coincide. As a
consequence, the true-amplitude weight 30 reduces to the
simpler, dip-independent expression

w(y,x) = 4
cosα(x)
cos χ(x)

. (31)
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If the geological dip is unknown, we may approximate
expression 30 by expression 31 to obtain a true-amplitude
Kirchhoff migration that does not depend on the reflector
dip. The asymptotic evaluation of the Kirchhoff integral
in equation 29, using the amplitude weights 30 or 31,
produces the same result. Equation 31 represents a
natural extension to anisotropic media of the corresponding
expression for isotropic media, as given in Schleicher et al.
(1993).

Wave-equation continuation

The true-amplitude Kirchhoff migration algorithm described
above may have problems in complex geology with many
caustics and traveltime triplications. Then a wave-equation
continuation may be used.

In the exploding reflector model for seismic migration, it
is assumed that the preprocessed seismic data, uR(x, t),
is the upgoing wavefield. The Fourier transform of the
data, UR(x,ω), are reverse propagated in a half-velocity
model. In anisotropic media this is obtained by multiplying
the density by two and dividing the elastic parameters by
two (see Appendix). The migration can be understood
as reverse-propagating the normal wave, so that, as a
consequence, only the normal-wave part of the geometrical
spreading for the reflected wave is compensated. The
image at depth is taken for time equal zero. At any reflector
point, y, the migration result is approximately

IR(y) =
rN(y)e−i π

2 κNIP(y,x)

2LNIP(y,x)
, (32)

where x is the point where the normal ray from y hits the
measurement surface.

In order to estimate and correct for the geometrical-
spreading factor, LNIP(y,x), and KMAH index, κNIP(y,x),
we must know the geological dip. Then we can compute
these quantities by tracing the normal-incidence ray,
starting at the image point, y, normal to the geological
dip, up to the emergence point, x, at the data acquisition
surface.

If this is not possible, we may perform an additional
Kirchhoff migration, this time with the new weight

w1(y,x) = w(y,x)[2LNIP(y,x) ei π
2 κNIP(y,x)] . (33)

The resulting amplitude at depth is approximately given by

IK(y) = rN(y)[2LNIP(y,x) ei π
2 κNIP(y,x)] . (34)

Combination of equations 32 and 34 permits us to define
the quantity

C(y) = 2LNIP(y,x)ei π
2 κNIP(y,x) =

IR(y)
IK(y)

. (35)

After smoothing, this quantity is used as a correction factor
applied to the previous migrated data of equation 32,
leading to an estimate of the normal-incidence reflection
coefficient

rN(y) = IR(y)C(y) . (36)

CONCLUSIONS

We have shown that the ray theoretical Green’s tensor for
the normal-incidence reflected wave is equal to the product

of a constant times the tensor response of the normal wave
times the Green’s tensor of the reverse NIP wave. Using
the normal wave resulted in a scheme for true-amplitude
map migration. True-amplitude post-stack depth migration
can be done by a ray-based migration algorithm or reverse-
propagating the recorded wavefield in a model with half the
elastic constants and double the density. This results in
a half-velocity model in anisotropic media. The image is
formed by taking the reverse-propagated wavefield at time
equal zero followed by an additional geometrical spreading
correction.
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Appendix A: Construction of an anisotropic half-
velocity model

In this appendix, we explain how to modify the parameters
of a given anisotropic medium so that the velocities in
the new medium equal the corresponding ones of the
original medium, multiplied by a user selected constant.
In particular, we use this strategy to construct the
“half-velocity model” needed for the post-stack migration
scheme used in the main text.

We adopt the notation and basics of anisotropic wave
propagation from Chapman (2004). We consider a given
anisotropic medium specified by the density-normalized
matrices

ai j = ci j/ρ , (A-1)

where (ci j)kl = ci jkl is the elastic-parameter tensor in
contracted notation and ρ is the density function. A
explained in, e.g., (Červený, 2001, section 2.2.4), for a
given direction vector, p̂ = ( p̂i), the associated Christoffel
matrix, Γ, is defined by

Γ = p̂i p̂ ja jk , (A-2)

for which the associated eigen-equation is
(

v2I−Γ
)

ĝ = 0 . (A-3)

The three eigenvalues, v, (namely, v = vI , with I = 1,2,3),
are the phase velocities of three different wave modes,
which determine the corresponding permitted slowness
vectors p = p̂/v. The corresponding (unit) eigenvectors, ĝ,
are the polarization vectors.

We consider the equations of motion and constitutive
relations of wave propagation in an anisotropic medium, as
given in Chapman (2004), equations (4.5.35) and (4.5.36),
with a slightly different notation

∂w
∂ t

=
1
ρ

∂ t j

∂x j
+

1
ρ

f and
∂ t j

∂ t
= c jk

∂w
∂xk

. (A-4)

In the above equations, w, denotes the particle velocity
vector (as opposed to Chapman that uses v for that
quantity) and t j is the j-th component (column) of the stress
tensor. If we divide equations A-4 by a scalar, K 6= 0, and
then change variables

t → t ′ = Kt, ρ → ρ ′ = Kρ and ci j → c′i j = ci j/K , (A-5)

we see that the new equations are of the same form as the
old ones. In particular, the new Christoffel equation reads

(
(v′)2I−Γ′

)
ĝ′ = 0 , (A-6)

where v′, Γ′ and ĝ′ are the modified quantities that
correspond to v, Γ and ĝ, respectively, after the change of
variables. From equations A-1, A-2 and A-5, we see that

a′i j = (1/K2)ai j and Γ′ = (1/K2)Γ . (A-7)

Substitution into equation A-6 yields
(
(K v′)2I−Γ

)
ĝ′ = 0 , (A-8)

which has the solutions

v′ = v/K and ĝ′ = ĝ . (A-9)

The new slowness vector, p′ and group velocity vector, V′,
satisfy

p′ =
1
v′

p̂ =
1

(v/K)
p̂ = Kp . (A-10)

and

V ′i = a′i jkl p′k ĝ j ĝl =
ai jkl

K2 (K pk) ĝ j ĝl = Vi/K. (A-11)

Equations A-9 and A-11 tell us that the phase and group
velocity are both scaled by 1/K in the new medium. This
is what we expected since the equations of motion and
constitutive relations A-4 remained unchanged for the new
elastic parameter tensor and new density, together with
the fact that the new time has been multiplied by K (see
equation A-5). From this we see that, to obtain a half-
velocity model, one has to divide the elastic parameter
tensor by two and multiply the density by two.
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