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SUMMARY

We present a comprehensive framework for wave-equation il-
lumination analysis and introduce a target-oriented illumina-
tion correction that simultaneously accounts for limited acqui-
sition aperture and, locally, compensates for the so-called nor-
mal operator in inverse scattering to yield a “true-amplitude”
image of reflectivity or reflection coefficient, while minimiz-
ing (orientation dependent) phase distortions and artifacts. To
carry out the analysis we make use of “curvelets” (viewed as
optimally localized plane waves) which provide the means of
extracting directional information and hence form a natural
candidate to generalize geophysical diffraction tomography.

INTRODUCTION

It remains a challenge to generate images that admit a quantita-
tive interpretation in regions of complex geology, even if an ac-
curate velocity or background model has been obtained. Typ-
ically, limited acquisition aperture gives rise to – dip depen-
dent – image amplitude variations, and phase distortions and
artifacts. Here, we develop a technique that addresses these
illumination effects in the framework of wave-equation mi-
gration. Throughout we assume the single scattering approx-
imation for reflection seismic data. The procedure contains
elements of (regularized) Least-Squares migration (Kühl and
Sacchi (2003); Clapp et al. (2005)), double focusing (and the
notion of controlled illumination, see Rietveld and Berkhout
(1994); Alai and Thorbecke (2008)), geophysical diffraction
tomography (Devaney (1984); Wu and Toksöz (1987)), and is
motivated by the illumination analysis of Xie et al. (2006) and
Wu and Chen (2006).

We develop a relation between curvelet coefficients represent-
ing the image and the curvelet coefficients representing the
(downward continued) data. The coefficients also immedi-
ately provide information about the directional dependence,
that is, downward continued wave slowness vectors and image
dips, and implicitly scattering angle (and azimuth). Indeed, the
curvelet transform reveals the imprint of the ray geometry un-
derlying the wave-equation illumination analysis which can be
used as part of an imaging condition.

Andersson et al. (2008) derived and developed a multi-scale
approach to wave propagation by solving a Volterra equation
yielding the concentration of wave packets even in velocity
models of limited smoothness. Building on this result, here,
we develop the downward continuation counterpart of partial
reconstruction based on the GRT (De Hoop et al. (2009)). Our
point of departure is the unifying formulation for seismic in-
verse scattering by Stolk and De Hoop (2005, 2006). In our
derivation we will point out analogies with the illumination
analysis introduced by Luo et al. (2004); Xie et al. (2006); Wu
and Chen (2006). We go beyond the latter analysis by con-

necting the data illumination with the normal operator both for
generating images as well as common-image-point gathers.

Curvelets are different from “beamlets” (Chen et al. (2006)).
Curvelets provide the harmonic analysis tool to sparsely rep-
resent the propagators (Smith (1998); Candès and Demanet
(2005)) and localize the normal operator. In particular, one can
obtain the inverse of the normal operator matrix via diagonal
approximation (De Hoop et al. (2009)). The curvelet ampli-
tude spectra are essentially window functions while curvelets
themselves are well localized with decay tracing oriented el-
lipsoids. “Beamlets”, on the other hand, are generated by win-
dowed Fourier transforms.

We will begin with summarizing modeling of reflection seis-
mic data in the Born approximation via extensions of the ve-
locity contrast. we summarize directional (up/down) wavefield
decomposition, introduce the double-square root (DSR) equa-
tion and discuss the associated thin-slab propagator. we derive
the extended wave-equation imaging operator matrix adapted
to contain an illumination correction, and then incorporate the
compensation for the normal operator, within each thin slab, to
arrive at the diffraction formulation of partial reconstruction.

THEORY

Following Stolk and De Hoop (2005), we write the Born ap-
proximation for single scattered waves in the form

δG(0,r, t,0,s) =
∫

Rn−1×R+

∫
Rn−1

∫ t

−∞

∫
R+

G(0,r, t− t0,z,x)

× ∂
2
t0 R(z,x, x̄, t0− t̄0)G(z, x̄, t̄0,0,s)dt̄0 dt0 dx̄dxdz, (1)

where

R(z,x, x̄, t0) = δ (t0)δ (x− x̄)2

(
δc
c3

0

)(
z,

x̄+ x
2

)
, (2)

or
R = E2E12c−3

0 δc (3)

represents the extension of velocity contrast. E1 and E2 are
two extension operators. The scattering operator then follows
to be

F : δc 7→ LE2E12c−3
0 δc (4)

it models deconvolved seismic reflection data, where the de-
convolution includes ∂

−2
t . Accordingly, operator L will be de-

fined as:

LR(s,r, t)=
∫

R+

{∫
Rn−1

∫
Rn−1

∫
R

(∫ t−t0

0
G(0,r, t−t0− t̄0,z,x)

× G(0,s, t̄0,z, x̄)dt̄0

)
R(z,x, x̄, t0)dx̄dxdt0

}
dz. (5)
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The double-square-root (DSR) propagator is given by

(H(z,z0))(s,r, t,s0,r0, t0)

=
∫

R
(G−(z,z0))(s, t− t0− t̄0,s0)(G−(z,z0))(r, t̄0,r0)dt̄0.

(6)

Here (G−(z,z0))(r, t̄0,r0,0) denotes the distribution kernel of
G−(z,z0), and (H(z,z0))(s,r, t,s0,r0, t0) denotes the distribu-
tion kernel of H(z,z0) and is the Green’s function of the DSR
equation. Additionally, directional (up/down) decomposition
of transient waves – in the “flux normalization” (see, for exam-
ple, De Hoop (1996)) – is accomplished through the introduc-
tion of pseudodifferential operator, Q−(z, .) = Q−(z,x,Dx,Dt),
with so-called principal symbol,

i sgn(ω)|ω|−1/2[c0(z,x)−2−ω
−2‖ξx‖2]−1/4.

With this operator, the upward continuation analogue of (5) is
given by (Stolk and De Hoop (2005))

LR :=−1
4

Q∗
−,s(0)Q∗

−,r(0)
∫

R+

H(0,z)Q−,s(z)Q−,r(z)R(z, ., ., .)dz,

(7)
Furthermore, the DSR propagator can be approximated by a
composition of thin-slab propagators (De Hoop et al. (2003);
Le Rousseau (2006)); one such thin-slab propagator attains the
form

(H(z′−∆,z′))(s,r, t,s′,r′, t ′)≈ (2π)−(2n−1)
∫ ∫ ∫

exp[i(〈ξs,s− s′〉+ 〈ξr,r− r′〉−∆Γ(z′,s,r,ξs,ξr,ω))]

× exp[iω(t− t ′)]dξsdξrdω. (8)

This approximation has an error roughly of order ∆1/2.

METHODS

Here, we develop a description of the single scattering operator
(cf. (4)) in terms of “curvelets”, which leads to the matrix rep-
resentations for the component operators, Q−(.) and L (cf. (7))
while making use of (8).

Decomposition of the scattering operator into curvelets

Through composition (4), we build up the action of F on a
curvelet. The frame of curvelets, {ϕγ} is introduced in Ap-
pendix. We consider 2c−3

0 δc = ϕγ0 , with γ0 =((z j0,x j0),ν0,k0),
which we can think of as being approximately supported on an
oriented ellipsoid, centered at (z j0,x j0) in space and (ξz,ξx) =
2k0 ν0 in wavenumber; ν0 can be thought of as a dip. The points
(z j0,x j0) lie on a tilted lattice; see Fig. 1.

Then after applying operator F in (4) to such single curvelet
with the method of stationary phase, and let the matrix for the
(invertible) propagator H(0,zm−1) be denoted by [H(0,zm−1)],
let [Q∗

−,s(0)Q∗
−,r(0)] denote the matrix associated with pseu-

dodifferential operator Q∗
−,s(0)Q∗

−,r(0), we find that the matrix

Figure 1: Coupling microdiffraction to illumination analysis:
Dipping contrast curvelet (indicated by the ellipse), source and
receiver wave vectors, lattice of translations and thin slab.

elements of F attain the form

〈ψγ ,Fϕγ0〉(s,r,t)

=−1
4

∑
γ ′′

[Q∗
−,s(0)Q∗

−,r(0)]γγ ′′

∞∑
m=1

∑
γ ′

[H(0,zm−1)]γ ′′γ ′Vγ ′;γ0(zm−1).

(9)

where

Vγ0(zm−1,s,r, t)≈ (2π)−(2n−1)
∫ ∫ ∫

Q−,s(z j0,s,ξs,ω)

×Q−,r(z j0,r,ξr,ω) ϕ̂ν0,k0(Γ(zm,s,r,ξs,ξr,ω),ξs +ξr)

× exp[−i(z j0− zm−1)Γ(zm,s,r,ξs,ξr,ω)]

× exp[i(〈ξs,s− x j0〉+ 〈ξr,r− x j0〉+ωt)] dξsdξrdω, (10)

which is viewed as a mapping of the contrast curvelet, ϕγ0 ,
to virtual subsurface reflection data, Vγ0(zm−1, ., ., .), provided
that z j0 ∈ (zm−1,zm) – we assume that the z j0 do not coincide
with zm, m = 0,1,2, . . .; see Fig. 1. We expand Vγ0(zm−1, ., ., .)
into curvelets, that is,

Vγ0(zm−1, ., ., .) =
∑

γ ′

Vγ ′;γ0(zm−1)ϕγ ′ (11)

Vγ ′;γ0(zm−1) = 〈ψγ ′ ,Vγ0(zm−1, ., ., .)〉(s,r,t) (12)

Migration and micro-diffraction tomography

Here, we describe imaging in the downward continuation ap-
proach in terms of “curvelets”. We decompose the surface re-
flection data, d =

∑
γ dγ ψγ ; we write d for the sequence of

coefficients dγ . We let the adjoint, F∗, of F , act on a data
curvelet, ψγ ,

F∗
ψγ (z, .) = R1R2Q∗

−,s(z)Q
∗
−,r(z)∑

γ̄ ′,γ̄ ′′

H(zm̄−1,z)∗ψγ̄ ′ [H(0,zm̄−1)∗]γ̄ ′ γ̄ ′′ [Q−,s(0)Q−,r(0)]γ̄ ′′γ

(
−1

4

)
,

(13)
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if z ∈ [zm̄−1,zm̄); here, R1 = E∗
1 and R2 = E∗

2 are restrictions
representing the traditional imaging conditions setting time (R2)
and subsurface offset (R1) to zero. If curvelet components, dγ ,
with index γ in the set S can be observed at the surface (S is
derived from the acquisition geometry), the associated subsur-
face illumination is captured in the matrix

[AS (zm̄−1,zm−1)]γ̄ ′γ ′ =∑
γ̄ ′′,γ,γ̃,γ ′′

[H(0,zm̄−1)∗]γ̄ ′ γ̄ ′′ [Q−,s(0)Q−,r(0)]γ̄ ′′γ

× Π
S
γγ̃ [Q∗

−,s(0)Q∗
−,r(0)]γ̃γ ′′ [H(0,zm−1)]γ ′′γ ′ (14)

with ΠS = Π 1S , which can be loosely thought of as a projec-
tion onto S ; for the introduction of Π, see Appendix A. The
inverse diagonal approximation of [AS (zm−1,zm−1)] is given
by

D̃γ ′(zm−1)−1 = [AS (zm−1,zm−1)]−1
γ ′γ ′Πγ ′γ ′ ;

this approximation reflects the inverse of [AS (zm−1,zm−1)] up
to an error of order 2−k/2 (De Hoop et al. (2009)).

Reconstruction

Here, we analyze the relationship between the illumination-
corrected image and the contrast. We arrive at a normal op-
erator for “micro”-diffraction tomography: The illumination-
corrected image corresponds with Ñ′ 2c−3

0 δc. Here,
Ñ′ = (F∗)′C−1ΠS CF , where C denotes the curvelet trans-
form, with matrix representation

[Ñ′]γ̄0γ0 =
(
−1

4

)2 ∞∑
m̄,m=1

∑
γ̄ ′,γ ′

V ∗
γ̄0;γ̄ ′(zm̄−1)D̃γ̄ ′(zm̄−1)−1

× [AS (zm̄−1,zm−1)]γ̄ ′γ ′Vγ ′;γ0(zm−1). (15)

Because Ñ′ is a pseudodifferential operator, its corresponding
matrix [Ñ′] is diagonally dominant, while

[Ñ′]γ0γ0 ≈
(
−1

4

)2∑
γ̄ ′,γ ′

V ∗
γ0;γ̄ ′(zm0−1)D̃γ̄ ′(zm0−1)−1

× [AS (zm0−1,zm0−1)]γ̄ ′γ ′Vγ ′;γ0(zm0−1) (16)

with [zm0−1,zm0) 3 z j0 as before.

We set up the normal equations for the extended contrast h,
which we subject to the decomposition, h =

∑
γ0

hγ0 ϕγ0 . Thus,
we redefine (cf. (12))

Vγ ′;γ0(zm0−1) := [Km0−1]γ ′γ0 , (17)

with

Km−1 : h →
∫ zm

zm−1

H(zm−1,z′)Q−,s(z′)Q−,r(z′)E2h(z′, ., .)dz′,

the propagation of singularities of which is described by a
transformation, ΣK;m−1 say, obtained by ray tracing.

We solve the normal equations in two steps. First, we con-
sider subsurface data coefficients dγ ′(zm0−1) and carry out a

“partial” redatuming by solving∑
γ ′

D̃γ̄ ′(zm0−1)−1[AS (zm0−1,zm0−1)]γ̄ ′γ ′dγ ′(zm0−1)

=
∑

γ̄ ′′,γ,γ̃

D̃γ̄ ′(zm0−1)−1[H(0,zm0−1)∗]γ̄ ′ γ̄ ′′ [Q−,s(0)Q−,r(0)]γ̄ ′′γ

×
(
−1

4

)
Π

S
γγ̃ dγ̃ , (18)

The second step concerns a micro-diffraction problem. We
carry out the “partial” reconstruction by solving

D̃Ξ(zm0−1)−1[K∗
m0−1]Π

S (zm0−1)[Km0−1]ΠC (zm0−1)(h)

= D̃Ξ(zm0−1)−1[K∗
m0−1]Π

S (zm0−1)(d(zm0−1)) (19)

for (h) upon substituting for (d(zm0−1)) the solution of (18).

EXAMPLES

The common component in the diffraction and reflection for-
mulation for illumination analysis is the correction with
D̃γ ′(zm−1). We illustrate this diagonal matrix by computing∑

γ̄ ′ [A
S (zm̄−1,zm−1)]γ̄ ′γ ′ψγ̄ ′ , in particular at m̄ = m, and as-

sessing how well the underlying matrix is approximated by its
diagonal.

As the background (c0) we use the low velocity lens model
depicted in Fig. 2; the dot in this figure indicates the scatter-
ing point position, (z,x), common in the subsequent numeri-
cal examples, and the dashed line indicates the chosen value
of zm−1. The lens is responsible for the formation of caus-
tics. The local reflector dips ((ξz,ξx)/‖(ξz,ξx)‖) and scatter-
ing angles (corresponding with p) considered are indicated by
the arrow patterns inside the three boxes at the bottom; we
let k0 = 1. We begin with generating the ϕγ ′ ’s at depth zm−1

Figure 2: Velocity model with low-velocity lens, acquisition
surface and illumination depth, zm−1. Three cases with various
scattering and dip angles are considered

indicated by the dashed line in Fig. 2, locally, for subsurface
sources and receivers in the between the solid triangles; they
are plotted in Figs. 3(a) (top), 3(b) (top) and 3(c) (top). We
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then compute
∑

γ̄ ′ [A
S (zm̄−1,zm−1)]γ̄ ′γ ′ψγ̄ ′ , where S is im-

plied by the limited acquisition geometry indicated by the solid
triangles on the acquisition surface in Fig. 2. The results, rep-
resenting our illumination analysis, are illustrated in Figs. 3(a)
(bottom), 3(b) (bottom) and 3(c) (bottom). We also computed∑

γ̃,γ ′′ [Q
∗
−,s(0)Q∗

−,r(0)]γ̃γ ′′ [H(0,zm−1)]γ ′′γ ′ϕγ̃ for a test source
location (indicated by a + in Fig. 2), see Fig. 3(d). We observe
the expected localization property (from subsurface to surface)
of curvelets in phase space; for comparison, we also simulated
the full synthetic data for the zero dip case (top left).

(a) (b)

(c) (d)

Figure 3: (a)(b)(c) Original subsurface data curvelet (top) and
retrofocused subsurface data (bottom). (d) surface data gener-
ated in the model and by upward continuing the subsurface
data curvelet in (a)(b)(c). We note the localization of these
three surface data

Finally, we visualize the decay of [AS (zm−1,zm−1)]γ̄ ′γ ′ away
from its diagonal. We take the value of γ ′ corresponding with
the curvelet in Fig. 3 (top). In Fig. 4 we plot, at scale k′ = 2, the
values of |[AS (zm−1,zm−1)]γ̄ ′γ ′ | if γ̄ ′ differs from γ ′ by trans-
lations ((s,r, t) j̄′ 6= (s,r, t) j′ ) or rotations (ν̄ ′ 6= ν ′). This pro-
vides a quantification of accuracy implying whether iterations
are needed for the illumination correction beyond the inverse
diagonal approximation.

Figure 4: Visualization of the decay of [AS (zm−1,zm−1)]γ̄ ′γ ′
away from its diagonal. Here, the value of γ ′ corresponds with
the curvelet in Fig. 3(a). The values of |[AS (zm−1,zm−1)]γ̄ ′γ ′ |
are plotted if γ̄ ′ differs from γ ′ by translations ((s,r, t) j̄′ 6=
(s,r, t) j′ ) or rotations (ν̄ ′ 6= ν ′).

CONCLUSIONS

We have developed a technique to compensate for illumina-
tion effects in the framework of wave-equation migration. We
constructed amplitude “correction” that account for limited ac-
quisition aperture (illumination) and that compensate for the
so-called normal operator to yield a “true-amplitude” image
of reflectivity or local reflection coefficient, while minimizing
distortions and artifacts. We establish a relationship with geo-
physical diffraction tomography in terms of curvelets. We de-
compose the subsurface into thin slabs. The normal operator
correction pertains to diffraction or reflection within the thin
slabs, while the illumination correction pertains to downward
continuation to the tops of the thin slabs.

APPENDIX: WAVE PACKETS AND CURVELETS

We introduce boxes (along the ξ1-axis, that is, ξ ′ = ξ1)

Bk =
[

ξ
′
k −

L′k
2

,ξ ′k +
L′k
2

]
×
[
−

L′′k
2

,
L′′k
2

]m−1

,

where the centers ξ ′k, as well as the side lengths L′k and L′′k ,
satisfy the parabolic scaling condition. In the (co-)frame con-
struction, we have two sequences of smooth functions, χ̂ν ,k

and β̂ν ,k, which form a co-partition of unity

χ̂0(ξ )β̂0(ξ )+
∑
k≥1

∑
ν

χ̂ν ,k(ξ )β̂ν ,k(ξ ) = 1, (20)

The frame elements (k ≥ 1) are then defined in the Fourier
domain as

ϕ̂γ (ξ ) = ρ
−1/2
k χ̂ν ,k(ξ ) exp[−i〈x j,ξ 〉], γ = (x j,ν ,k), (21)

and similarly for ψ̂γ (ξ ). We obtain the transform pair

vγ =
∫

v(x)ψγ (x)dx, v(x) =
∑

γ

vγ ϕγ (x) (22)
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