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Summary

To derive a new fractional approximation for traveltime
squared for a layered transversely isotropic medium with
vertical symmetry axis we use the Taylor series for the
phase velocity in terms of the horizontal slowness.

Introduction

The standard hyperbolic approximation (Dix, 1955) of the
P-wave reflection traveltime commonly used in seismic
data processing is correct for a homogeneous isotropic
medium and a plane reflector. Taner and Koehler (1969)
derived a Taylor series approximation of traveltime squared
as function of offset (horizontal source-receiver separation)
for a stack of horizontal layers from traveltime and offset
expressed by the horizontal slowness or ray parameter. The
standard hyperbolic approximation, expressed by the zero-
offset traveltime and the RMS- or NMO-velocity is not
valid for large offset. The shifted hyperbola (Malovichko,
1978; Castle, 1988, 1994; de Bazelaire, 1988) is an
approximation which uses a third parameter, a
heterogeneity coefficient, to improve the accuracy at larger
offsets.

For a homogeneous transversely isotropic medium with
vertical symmetry axis (a VTI medium), the hyperbolic
approximation is valid only for small offsets and the
velocity is NMO-velocity which is different from the
vertical velocity (Thomsen, 1986). Tsvankin and Thomsen
(1994) showed numerically that the fourth-order Taylor
series of reflection traveltime squared rapidly looses
accuracy with increasing offset, and they proposed a non-
hyperbolic fractional approximation with better numerical
performance.

Here we consider multiple converted and reflected qP-qSV
waves or multiple reflected SH waves in a horizontally
layered medium considering of isotropic and VTI layers
where the source and receiver are not necessarily in the
same layer. The traveltime and offset (horizontal source-
receiver separation) are first expressed in terms of the
group velocities and group angles, the angles the
rays/group velocity vectors) make with the vertical axis.
Using results from Ursin and Hokstad (2003) these are next
expressed in terms of the phase velocities and phase angles.
The phase slownesses are expanded in Taylor series in
terms of the horizontal slowness or ray parameter (Stovas
and Ursin, 2003). For a stack of isotropic layers traveltime
and offset are functions of horizontal slowness with
coefficients that depend on the velocity moments of the
layered medium. We show that exactly the same structure
can be obtained for a stack of VTI layers where the
coefficients are computed recursively from the vertical
velocities and anisotropy parameters without assuming
weak anisotropy. From this we can directly use the results

from Taner and Koehler (1969) or Hubral and Krey (1980)
to write the Taylor series for traveltime squared in terms of
even powers of offset. The NMO-velocities are as given by
Thomsen (1986) and Tsvankin and Thomsen (1994) but the
higher-order coefficients are different. Similarly we get the
shifted hyperbolic approximation as in Castle (1994) but
with coefficients generalized for a layered VTI medium.
The higher-order terms in the Taylor series are used to
derive a new fractional approximation for traveltime
squared which is correct up to the sixth power in offset. By
dropping some terms this approximation reduces to the one
proposed by Stovas and Ursin (2004). This simplified
fractional approximation and the shifted hyperbola are both
expressed by the same three parameters: the zero-offset
traveltime, the NMO-velocity and a heterogeneity
coefficient.

The different traveltime approximations are compared in a
numerical example using a model from Ursin and Hokstad
(2003).

Taylor series approximation

We consider wave propagation in a stack of homogeneous
VTI. For a multiple transmitted and reflected SH-wave or
multiple transmitted, reflected and converted qP-qSV-
wave, the traveltime is

T=Z Az, =Z Az, (1*‘1";)’ )

« V cosa, v v, cosd \
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where the sum is taken over each layer as the wave passes
though. For layer number k: Az = layer thickness, V, =
group velocity, v, = phase velocity, & = group angle
(ray angle), 6, = phase angle, p =sin8, / v, = horizontal

slowness (ray parameter) and v: =dv, / dp = derivative of

the phase velocity.
The offset, or horizontal distance between source and
receiver, is given by

v Az v
x=ZAzktanak=z - k(p+"f), 2)
Kk v

« cosé

We express the phase velocity by

11
S =T7PS, 3

v v

3 0.k

where v is the vertical velocity in layer number k.

Next we expand the function 1+ S _in Taylor series
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By eliminating the square roots in equation (5) and (6) and
expanding in Taylor series, we can write

T(p)=T(0) X2 b u,p" %)

and )
x(p)=pT(0) X by, p" ®)

Here
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T(0)=2—==21, (10)
with t  being vertical one-way traveltime in each layer as
the ray passes through, and
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These parameters we can compute from
1

()

where a recursive scheme for computing u

’ll2n = tﬂ.k#Zn,k (12)

from the

2n+2.k
previous g, values and the Taylor coefficients a,
depending on the layer parameters given by

2
u, =a, v, forn=0,

bn’uzmzx - (n+l)vuk (13)
+Z a v, [G+1)b —jb ] forn=12,..
with 4 =1. The Taylor series for T(p) and x(p) in

equation (7) and (8) are of exactly the same form as for a
stack of homogeneous isotropic layers. We can therefore
directly write (Taner and Koehler, 1969; Hubral and Krey,
1980)

(14)
where
1 M -H
¢, = ( )Z 4
4T(0 M,
(15)
C oL m-pu -y,
" s1(0) A
The shifted hyperbola

The standard hyperbolic traveltime approximation (Dix,
1955) is obtained by only using two terms in the Taylor
series in equation (14). An improved approximation is the
shifted hyperbola (de Bazelaire, 1988; Castle, 1988)

T(0 ’S
T(x)=T(0)+ (©) 1+ xz -1{ (6)
s T(0) v,
where
s=”—; (17
H,

For a stack of VTI layers we use the same formula, with the

new definition of 4, and x, given in equation (11).

Fractional approximations
Tsvankin and Thomsen (1994) proposed a fractional
traveltime approximation for VTI media. A new

approximation, which is correct up to the order x°, is the
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following
) 5 x c.x'
T(x) =T(0) +——+—— (18)
Vo 11Bx
with
c 1 2u’ - —u
B:__'l: ﬂ4 ﬂlﬂé ﬂlﬂd (19)

e, 2m(0) (u-u)

Assuming 4, to be large, and dropping other terms, we
obtain
1
B-—— 2 (20)
T(0)" 4

Stovas and Ursin (2004) have proposed an approximation
for a single VTI layer which can be extended to the multi-
layer case as

2
T(x) =T(0) + X
VNM(’)
Gx' @2n
) 2 xz
Vio | T(0) +—(1+4G)
Vo

where G now is given by
1 1
=— #—:—1 =—[s-1] (22)
4 4

It can be verified that the approximation in equation (21) is
the same as the one in equation (18) with the approximate
value of B given by equation (20).

2

Numerical examples

We compare all approximations for the layered VTI model
from Ursin and Hokstad (2003) including 13 layers. Figure
1 and 2 show the absolute value of the traveltime errors for
the different approximations for the depth 0.75km and
2.24km, respectively. It is seen that in all cases (with the
exception of SVSV reflection in Figure 2), the fractional
approximation (18), (19) has the best performance. The
fractional approximation (18), (20) and the shifted
hyperbola approximation (16) give similar results.

Conclusions

We have derived new approximations for the PP, SVSV,
PS (SP) and SHSH reflection traveltimes for a layered VTI
media not using the weak-anisotropy assumption. The
comparison made for the layered model shows that the
fractional approximation is more accurate.

References

Castle, R.J., 1988, Shifted hyperbolas and normal moveout:
58th SEG Meeting,Anaheim, Expanded Abstracts, 894-
896.

Castle, R.J., 1994, A theory of normal moveout:
Geophysics, 59, 983-999.

De Bazelaire, E., 1988, Normal moveout revisited:
inhomogeneous media and curved interfaces: Geophysics,
53, 143-157.

Dix, CH., 1955, Seismic velocities from surface
measurements: Geophysics, 20, 63-86.

Hubral, P., and Krey, T., 1980, Interval velocities from
seismic reflection time measurements: SEG, Tulsa.
Malovichko, A.A., 1978, A new representation of the
traveltime curves of reflected waves in horizontally layered
media: Applied Geophysics, 91, N1, 47-53 (in Russian).
Stovas, A., and Ursin, B., 2003, Reflection and
transmission responses of layered transversely isotropic
visco-elastic media: Geophysical Prospecting, 51, 447-477.
Stovas, A., and Ursin, B. 2004, New traveltime
approximations for a transversely isotropic medium;
Journal of Geophysics and Engineering, submitted.

Taner, M.T., and Koehler, F., 1969, Velocity spectra —
digital computer derivation and applications of velocity
functions: Geophysics, 34, 859-881.

Thomsen L. 1986, Weak elastic anisotropy: Geophysics,
51, 1954-1966.

Tsvankin, L, and Thomsen, L., 1994, Nonhyperbolic
reflection moveout in anisotropic media: Geophysics,
59, 1290-1304.

Ursin, B., and Hokstad, K., 2003, Geometrical spreading in
a layered transversely isotropic medium with vertical
symmetry axis: Geophysics, 68, 2082-2091.

Main Menu

SEG Int'l Exposdition and 74th Annual Meeting * Denver, Colorado * 10-15 October 2004



Traveltime approximations for a layered transversely isotropic medium

at,, [ms]

A4t [ms]

4t [ms]

at,.,, [ms]

B
W
3
w7
= .
4
T
-
< - b
< i i
ceeeer 3 t0MME [ % I !
24 atarms 1 %l
Shifted hyperbola i )
o t @ o
3 Fraction: : ! !
#8918
* 8q20 ¢ - s
44 I 3 o I .
00 05 10 15 20
Offset [km]
4
Taylor:
a4 2torms
------ 3terms.
4terms.
21| shited hyperdote
o
J
15 20
2
E
J
0,0 05 1.0 15 20
Offset [km]
41 N
e
|
3 o
o
2 . X
| Vi &
s | &£
Taylor: *
11 Zterms. E3
s Blerms. 5.
4terms *
24 Shifted hypertoia -
©
| Frestion:
& eq19
* eq20 :
44 ) ,
00 05 10 15 20
Offset [km]

Figure 1. Traveltime errors for reflections from the
bottom of layer 5 (at 0.75 km).
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Figure 2. Traveltime errors for reflections from the
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bottom of layer 13 (at 2.24 km).
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