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SUMMARY

If singly scattered seismic waves illuminate the entirety of a subsurface
structure of interest, standard methods can be applied to image it. In
many cases, subsalt imaging for example, a combination of restricted
acquisition geometry and imperfect velocity models results in regions
of the model that are not illuminated with singly scattered waves. We
present an approach to use multiply scattered waves to illuminate such
structures, and illustrate the method by creating images of the base of
salt with an erroneous velocity model. This method builds upon past
work in which methods to predict artifacts in imaging from multiply
scattered waves have been developed and shares similarities with cur-
rent techniques of imaging with surface-related multiples.

INTRODUCTION

In this paper we discuss a method for subsalt imaging using internal
multiples. Our approach extends the work of Malcolm and de Hoop
(2005) by including illumination in a series representation that models
the data as a superposition of different phases. By explicitly including
illumination in the series representation we identify those multiples
which carry information about regions of the subsurface not illumi-
nated by singly scattered waves.

Imaging with internal multiples in the framework of the one-way wave
equation requires a “multi-pass” approach reminiscent of the general-
ized Bremmer series (de Hoop, 1996). Turning waves are accounted
for in such an approach as discussed by Xu and Jin (2006); Zhang
et al. (2006); see also Hale et al. (1991). In the multi-pass approach,
starting at the surface (or top), waves are first propagated downwards
and then stored at each depth; in the second “pass”, starting at the
bottom, reflection operators derived from the estimated standard im-
age are applied to the stored fields and the results are propagated,
accumulatively, back upwards. For turning waves, or doubly scat-
tered waves this up-going field is correlated with the saved down-going
field to form an image of steeply-dipping reflectors (for doubly scat-
tered waves this is similar to the work of Jin et al. (2006); Xu and Jin
(2007)). For internal multiples the source-side up-going field is cor-
related with the receiver-side up-going field to form an image of e.g.
the base of salt. A related method for imaging with surface-related
multiples has been proposed by Berkhout & Verschuur (1994; 2006)
in which one leg of the surface multiple generates a new primary wave
with the source at the surface reflection point; similar techniques are
also discussed in Guitton (2002). Another method for imaging with
surface-related multiples with particular emphasis on reducing cross-
talk between the two (or more) images is given in Brown and Guitton
(2005). For surface-related multiples, this improves the range of scat-
tering angles illuminated for a single data set and allows the imaging of
a larger region. Interferometric techniques can be applied to multiples
to allow standard migration techniques to be applied to the resulting
data; this is discussed in Schuster et al. (2004); Jiang (2006); Jiang
et al. (2007); Vasconcelos et al. (2007). Here we use internal multi-
ples, recorded at the surface, to image around complicated structures,
such as salt domes, to create an image of the base of salt using waves
that have not passed through it.

Our series approach builds on the development of the inverse general-
ized Bremmer coupling series in Malcolm and de Hoop (2005) which
combines aspects of the Lippmann-Schwinger equation driven inverse
scattering series developed by Weglein et al. (1997; 2003) with the

generalization of the Bremmer series (Bremmer, 1951) developed by
De Hoop (1996).

THEORY

Following past work on artifact prediction (Malcolm and de Hoop,
2005; Malcolm et al., 2007), we define the matrices

G =
(

G+ 0
0 G−

)
, (1)

where G+ propagates waves upward and G− downward and

V̂ =
(

V̂++ V̂+−
V̂−+ V̂−−

)
, (2)

where V̂ is the so-called contrast operator that governs the coupling
of wave components. The V̂ operator is decomposed into a series
V̂ = ΣM

j=1V̂j with V̂j representing the jth order in the data contrast sim-

ilar to Weglein et al. (2003). In this formulation, V̂−+ couples down to
up-going waves, V̂−− up to up-going waves etc. To account for illumi-
nation, we then take the first-order contrast, V̂1 and split it into three
parts via

V̂1 = V̂ ′
1 +V̂ ′′

1 +V̂ ′′′
1 + . . . , (3)

where V̂ ′
1 is the part of the model that has been illuminated by the

recorded singly scattered data, V̂ ′′
1 is the part of the model that is first

illuminated by the doubly scattered data, V̂ ′′′
1 is the part of the model

first illuminated by triply scattered data, and so on.

From the recursions given in (Malcolm and de Hoop, 2005,equations
(52-54)) and the above series for V̂1 in equation (3) we can derive an
expression for the scattered field and from this an equation modeling
the data. The scattered field expression is complicated, however, by the
appearance of wave-paths such as those illustrated in Figure 1 (c-e).
Assuming a standard seismic acquisition geometry where the sources
and receivers are restricted to the Earth’s surface allows the derivation
of the much simpler data equation

d = RQ∗
−∂

2
t G−

[
(V̂ ′

1)−+ +∂
2
t (V̂ ′

1)−+ G+ (V̂ ′′
1 )++

+∂
2
t (V̂ ′′

1 )−− G− (V̂ ′
1)−+ +∂

4
t (V̂ ′

1)−+ G+ (V̂ ′′′
1 )+− G− (V̂ ′

1)−+

]
G+ f+,

(4)

where d are the data, R restricts the resulting wavefield to z = 0, f+
is a source of down-going energy, and Q∗

− is introduced by Stolk and
de Hoop (2006) and forms a part of the recomposition of the up and
down-going wavefields to form the total wavefield. In equation (4) the
first term represents primaries, the second doubly scattered waves or
prismatic reflections, and the third multiples. In the following section,
we present our proposed algorithm to image from this equation using
multiply scattered waves.

ALGORITHM

We start with the data equation (4). Our imaging strategy is as follows.
We “project” d onto d1 where

d1 = RQ∗
−∂

2
t G−((V̂ ′

1)−+(G+ f+)) (5)
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Figure 1: Illustration of some of the wavepaths that could contribute to the data and their relationship to the illumination decomposition of V̂ into
V̂ ′,V̂ ′′, and V̂ ′′′. (a) and (b) are included in our analysis while (c)-(e) are not.

in the range of the single scattering operator, by minimizing ‖d −d1‖.
We then propagate these data downward and reconstruct the image
(V̂ ′

1)−+ by applying an imaging condition. We then select a part,

( ˙̂V 1)−+, of this reconstruction to become a scatterer in the background
model. We emphasize that this does not amount to adding a particu-
lar reflector to the velocity model as in reverse-time migration or the
method proposed by Youn and Zhou (2001) but simply isolates a re-
gion of the model expected to form the deeper reflections for internal
multiples; this separation also reduces the cross-talk between singly
and multiply scattered images (see Brown and Guitton (2005) for a
thorough discussion of cross-talk). (We suppress the mention of imag-
ing with doubly scattered waves here as this procedure would be simi-
lar to that proposed by Jin et al. (2006); Xu and Jin (2007); however, in
general the doubly scattered data should be estimated next.) We then
define a composite Green’s function

G̃−+ · = ∂
2
t G−(( ˙̂V 1)−+(G+ ·)), (6)

which accounts for propagation to the reflector, reflection from it, and
propagation upwards towards the second scattering point. We pro-
ceed with “projecting” d −d1 −d2 onto d3 in the range of the “triple”
scattering scattering operator, (substituting (6) into the third term of
equation (4))

d3 = RQ∗
−∂

2
t G̃−+((V̂ ′′′

1 )+−(G̃−+ f+)), (7)

by minimizing ‖(d−d1−d2)−d3‖. From equation (7) the reconstruc-
tion of (V̂ ′′′

1 )+− is done by applying a standard imaging condition to
the computed G̃’s. For computational efficiency, we approximate d3
through a time-windowing procedure, applied at depth to separate the
primaries used to form ( ˙̂V 1)+ from the multiples used in estimating
(V̂ ′′′

1 )+−.

This algorithm is illustrated in Figure 2. In (a)-(d) the wavefield is
shown to highlight the different arrivals included in our imaging pro-
cedure. In the algorithm, first ‘D’, the direct wave, is simulated as in
standard shot migration; from the standard image made as this wave-
field is propagated, an estimate of the location of the lower reflector (at
1.5 km marked with a solid line) is made. Using this estimated image,

the reflected wave ‘R’ is simulated from the source side. Concurrently
the same procedure is applied to the data, propagating them first down
and then up after interacting with the lower reflector through ˙̂V 1. In
Figure 2(e) singly, doubly and triply scattered waves are used to form
an image of the cube from the outside assuming a constant background
velocity. To image the sides of the cube with doubly scattered waves,
we apply an imaging condition to the downgoing wavefield ‘D’ on the
source (receiver) side and the reflected wavefield ‘R’ on the receiver
(source) side. To image the bottom of the cube with multiples, we use
the ‘R’ wavefield from both the source and receiver sides. In (f) and
(g) we compare the accuracy of the location of the lower edge of the
cube, migrating with a constant background velocity, using primaries
(imaging from above) and multiples (imaging from below). Because
the multiples do not pass through the cube they give a more accurate
location of its lower edge.

EXAMPLES

To test the ability of the above described theory to image the base of
salt, we developed a model in which the salt contains sediment inclu-
sions; we then study the influence of these inclusions on the location of
the bottom of salt both with singly and triply scattered waves. We gen-
erated 2D finite difference data in two models: the ‘inclusion model’
and the ‘inclusion-free model’. The inclusion model is shown in Fig-
ure 3 (a); the inclusion-free model differs only in the absence of the
inclusions.

In Figure 3 (b) a standard image is made with the inclusion model.
Because the velocity model is correct in this case, the base of salt is
well imaged. In Figure 3 (c) the inclusion data are migrated through
the inclusion-free model, resulting in a much poorer image of the base
of the salt.

In Figure 4 we illustrate imaging with multiples. In Figure 4(a) an
image is made of the base of salt in the inclusion-free model using
waves that have passed through the salt. This results in an image of the
base of salt that is comparable to the single-scattered image indicating
that as good an image is possible with multiples as with primaries
when the salt structure is known. In Figure 4(b) an image is made,
again in the inclusion-free model, restricting the wavepaths to not have
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Figure 2: Using multiply scattered energy allows the full illumination of an object of interest from surface data. Here we illustrate both the data
that are used in the imaging and the resultant images. In (a) through (d) we show snapshots of the wavefield, with time increasing from (a) to (d), as
the data are generated. The annotations on the plots highlight different phases used in imaging; ‘D’ is the direct (downgoing) wave, ‘R’ is reflected
(upcoming) from the lower reflector and ‘T’ is transmitted through it, ‘CR’ is the constituent reflected from the cube and ‘CT’ is the constituent
transmitted into it, ‘DS1’ and ‘DS2’ are the doubly scattered waves off the left vertical edge of the cube and ‘TS’ is the underside reflection. In all
plots the solid lines mark the positions of reflectors. In (e) we show an image, made assuming constant background velocity, of the cube structure;
the vertical edges are imaged with doubly scattered waves (‘DS1’ and ‘DS2’ in (d)) and the bottom with triply scattered waves (‘TS’ in (d)). In (f)
and (g) we show that imaging with triply scattered waves – and a constant background velocity – locates the reflector at the correct depth (in (f)),
whilst imaging from above, shown in (g), naturally places the reflector at the wrong depth. The traces in (f) and (g) are stacks of images at the base
of the cube; the solid line marks the correct reflector location.
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Figure 3: (a) Velocity model for the salt example; (b) Image made with
inclusion data and velocity model; (c) Image made with the inclusion
data and the inclusion-free velocity model.

passed through the salt by limiting the source and receiver positions
contributing to each region of the image. In this case, the flanks are
imaged with wave paths as in Figure 1(a) and the base with paths as
in Figure 1(b). In Figure 4(c) we show an image made with the same
method as in Figure 4(b) but with data from the inclusion model (the
imaging was still performed in the inclusion-free velocity model). This
image is comparable to the inclusion-free case because little energy
passes through the (erroneous) salt structure in the formation of the
image.

CONCLUSIONS

Multiply scattered waves have the ability to contribute useful informa-
tion to seismic images. Because they illuminate structures not easily
illuminated by primaries, these waves allow the imaging of regions of
the Earth not illuminated by singly scattered waves. By including the
illumination footprint of the acquisition geometry from the beginning
of our, series based, data representation we are able to isolate the con-
tributions from different orders of scattering. Once these contributions
are isolated it is possible to develop an algorithm to treat each order
of multiple scattering separately. It is important to note, however, that
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Figure 4: (a) When the salt structure is known, waves passing through
it can be used to make an image of the base of salt that is compa-
rable to a standard image; this image is made with data from the
inclusion-free model. (b) Underside multiple image with data from
the no-inclusion model. (c) Underside multiple image made with data
from the inclusion model, migrated with the inclusion-free velocity;
because waves do not travel through the salt the image is nearly as
good as the inclusion-free case in (b).

the resulting algorithms are quite similar and can in fact be combined
into one multiple-scattering imaging algorithm. Through synthetic ex-
amples, we have illustrated that including multiply scattered waves in
the imaging process enhances our ability to image the under side of
complicated structures such as salt domes.
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