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Summary 

A method for least-squares signal estimation with a 
complicated and therefore more realistic mathematical 
model of the multichannel seismic record containing 
random noise and an arbitrary number of coherent noise 
wavetrains is described. Under certain conditions, the 
method may be reduced to two successive stages: 
preliminary subtraction of estimates of all the coherent 
noise wavetrains and final estimation of the signal from the 
residual record. A simplified scheme and an advanced 
scheme for subtracting coherent noise are proposed, which 
are called zero-order and first-order approximations 
respectively. The first of them is the generalization of the 
conventional scheme for subtracting coherent noise to the 
complicated data model. The second scheme has 
indisputable advantages over the first one, since it allows 
the distortions that appear when estimating and 
subsequently subtracting the coherent noise wavetrains to 
be compensated. The effectiveness of the advanced 
technology is demonstrated with synthetic data sets 
contaminated by coherent noise of various intensities. 
 
Introduction 

When searching for and prospecting of hydrocarbon traps, 
geophysicists are often faced with the problem of 
recovering signal from multichannel seismic data sets 
contaminated by spatially coherent and random noise. 
Among both kinds of noise, it is coherent noise that is the 
most persistent problem in seismic imaging, and a number 
of techniques have been developed to attenuate it: optimum 
weighted stacking (Schoenberger, 1996), optimum array 
filtering (Hanna and Simaan, 1985), radial trace filtering 
(Zhu et al., 2004), f-k filtering (March and Bailey, 1983), 
Radon (τ-p) transform (Mitchell and Kelamis, 1990; Sacchi 
and Ulrych, 1995), spectral matrix filtering (Gounon et al., 
1998), singular value decomposition (Ulrych et al., 1999; 
Trickett, 2003; Tyapkin et al., 2007). Recently, in order to 
take advantage of high order statistics, the last technique 
has been combined with independent component analysis 
(Vrabie et al., 2004; Bekara and Van der Baan, 2006). In 
the 1960s-1970s, in order to solve the problem of optimally 
recovering the seismic signal imbedded in coherent and 
random noise, the majority of publications exploited 
multichannel Wiener filters (Meyerhoff, 1966; Cassano and 
Rocca, 1974,) or maximum-likelihood (least-squares) 
estimators. Then the situation changed and the interest of 
geophysicists in these methods gradually was lost because 
of their insufficient effectiveness. Their place was taken by 
non-optimum methods implying simplified mathematical 

models of seismic data, with f-k filtering and Radon 
transform being best known among them. Even though 
these filters are usually faster and more cost-effective, the 
most undesirable aspect of them is the mixing of the data, 
which is usually inherent in these processes, producing a 
wormy appearance in the output data. This leads to signal 
distortion and spatial correlation of background noise. In 
our opinion, the optimum methods are often less effective 
because they exploit, first, imperfect mathematical models 
of the record and, second, an imperfect scheme for 
subtracting coherent noise. For this reason, in this paper, 
we make an attempt to rehabilitate these methods and to 
reanimate the interest of geophysicists in them. With this 
purpose in mind, we utilize a more complicated and 
adequate mathematical model of the record. We adopt this 
generalized record model in order to get rid of or at least to 
minimize the model assumption errors, which refer to 
deviations of actual records from the assumed model, and 
thus to obtain more reliable signal estimates. With this 
mathematical model given, we derive a least-squares 
method for optimally approximating the underlying signal. 
Under certain conditions, the method may be reduced to 
two successive stages: preliminary subtraction of estimates 
of all the coherent noise wavetrains and final estimation of 
the signal from the residual record. On both stages, 
optimum weighted stacking is used with reference to the 
variance of random noise and the amplitudes and arrival 
times of the corresponding coherent components. A 
simplified scheme and an advanced scheme for subtracting 
coherent noise are proposed, which are called zero-order 
and first-order approximations respectively. The first of 
them is the generalization of the conventional scheme for 
subtracting coherent noise to the complicated data model. 
The second scheme has indisputable advantages over the 
first one, since it allows the distortions that appear when 
estimating and subsequently subtracting the coherent noise 
wavetrains to be compensated. The effectiveness of the 
advanced technology is demonstrated with synthetic data 
sets contaminated by coherent noise of various intensities. 
 
Solution of the problem and its analysis 

Suppose that the ith trace of the record that contains N 
traces may be written as: 

( ) ( )( ) ( )( ) ( ) Nitntrbtsatu i
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Here the signal is described by the first term on the right-
hand side of equation (1) and assumed to have an identical 
waveform s(t) on each trace, with arbitrary trace-dependent 
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amplitudes ia  and time delays ( )isτ . The amplitudes are 
permitted to have zero (a signal-free trace) and negative 
(e.g., due to the AVO-effect) values. The second term 
represents a superposition of coherent noise wavetrains 
with individual waveforms ( ) Lltrl  ..., ,1  , = . Each of the 
wavetrains, as well as the signal, bears arbitrary trace-
dependent amplitudes bil and time delays τ(r)il. Random 
noise is expressed by the third term and supposed to be a 
stationary zero-mean Gaussian stochastic process 
independent from trace to trace, with identical to within a 
scale factor, the variance 2σ i , autocorrelations on different 
traces. All the coherent noise waveforms are also assumed 
to be stationary zero-mean Gaussian stochastic processes 
independent of the signal, random noise and each other. 
Due to the above assumptions, the cross-spectrum of the 
entire noise between channels i and j may be expressed as: 

( ) ( ) ( ) ( ) ( )( )[ ]
( )( ) ijni
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where ( ) ( )ωlrR  and ( ) ( )ωnR  are the power spectra of  rl(t) 
and any ni(t), respectively, at the angular frequency ω , 
while ijδ  signifies the Kronecker delta function.  

Given this model, let us state the problem to obtain the best 
in least-squares sense estimate of the signal shape, s(t). 
With this purpose in mind, we represent the signal 
component as fs, where the column vector f is written 

( )( ){ ( )( )}H
NN iaia s1s1 ωτexp ..., ,ωτexp=f , the scalar s is the 

Fourier spectrum of s(t), and the superscript H denotes 
complex conjugate (Hermitian) transpose. For shot, here 
and in the following the functional dependence on 
frequency is dropped. The least-squares estimate of s can 
be written (Helstrom, 1968) 

( ) uRffRf 111 −−−= HHs ,             (3) 

where the column vector { }H
NUU **

1 ,...,=u  contains the 
Fourier spectra ,iU  i = 1, …, N, of all the traces, R is the 
matrix whose elements are defined by equation (2), -1 
signifies matrix inverse, and the superscripted asterisk 
stands for complex conjugation. 

In order to invert R, let us represent this matrix in the form 

( )DGBGR n
H R+= ,             (4) 

where { } ( )( ){ } , ..., ,1 , ..., ,1  ,exp LjNiib ijrijj ==ωτ−== gG  
is an N by L matrix that consists of the column vectors  
 

( )( ){ ( )( )}H
NjrNjjrjj ibib ωτexp  ..., ,ωτexp 11=g ,

( ) ( ){ }Lrr RR  ..., ,diag 1=B ,  { }22
1 σ ..., ,σdiag N=D . 

Then we can take advantage of the method described by 
Horn and Johnson (1986) and obtain 

( ) ( )( ) 111111 −−−−−− −= DGGVDIR H
nn RR ,            (5) 

where I is an identity matrix, 

( ) GDGBV 111 −−− += H
nR .             (6) 

Let the inequality 
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is valid for all i . The left-hand side of this inequality is the 
ratio of the power spectra of the ith coherent noise and the 
random noise at the output from optimum weighted 
stacking performed with regard for the amplitudes and 
arrival times of this coherent noise (Tyapkin and Ursin, 
2005). From equation (8), it follows that this quantity may 
be expressed as: 
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where ( )i
kR  is the ratio of the above spectra on the kth trace. 

From this it follows that inequality (7) can be valid even 
when the value of ( )i

kR  is rather small on each trace but the 
number of traces involved in processing is large enough. 

If the record obeys inequality (7), we can neglect the first 
term on the right-hand side of equation (6) and obtain 

( ) GDGV 11 −−= H
nR .            (10) 

This matrix with the elements ( ) ijn cR 1−  can be expressed as 

( ) ( )EIVVVIVVVV +=+=+= −
01

1
0010 ,         (11) 

where 0V  and 1V  contain the diagonal and off-diagonal 

elements of V  respectively, .1
1

0 VVE −=  Let a matrix 

norm of E , say ( )
∞
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c

c
e
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ij
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satisfies the inequality ( ) 1<ρ E . Then the inverse matrix 

( ) 1
0

11 −−− += VEIV  can be expanded into the series (Horn 
and Johnson, 1986) 

( ) 1
0
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After restricting the series by the second term, we obtain 

( ) ( ) 1
01

1
0

1
0
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Substituting this expression into equation (3) yields 
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Following equation (14), we should first estimate and then 
subtract from the data u all the coherent noise wavetrains. 
For this aim, the shape of each coherent noise is estimated 
using optimum weighted stacking uDg 11 −− H

lllc (Tyapkin and 
Ursin, 2005) performed with reference to the variance of 
random noise and the amplitudes and arrival times of this 
coherent noise. Then it is multiplied by lg  in order to 
obtain the ultimate estimate of the lth coherent noise, with 
its amplitudes and arrival times on all the traces. The third 
term from the parentheses on the right-hand side of 
equation (14) is intended to compensate for the entire 
distortion caused by the mutual impact of all the coherent 
noise wavetrains. Indeed, when estimating the lth coherent 
noise, all the other )  ( lk ≠  wavetrains take part. In this 
process, the kth wavetrain, the estimate of which is 

uDgg 11 −− H
kkkkc , participates in the estimation of the lth 

coherent noise in accordance with the formula 
uDggDgg 1111 −−−− H

kk
H
llkkll cc . Note there is no need in such a 

compensator if the coherent noise is single (L = 1). After 
subtracting all the coherent noise wavetrains, the residual 
data undergoes optimum weighted stacking 11 −− Df Hc  with 
regard to the variance of random noise and the amplitudes 
and arrival times of the signal. When coherent noise is 
absent, scc =  (Tyapkin and Ursin, 2005). In general case c 
in equation (15) accounts for the corruptive impact on the 
signal of both subtracting coherent noise and compensating 
for the mutual influence of all the coherent noise 
wavetrains. It is easy to show by substituting the signal fs 
instead of the entire data u in equation (14).  

We consider the procedure described by equation (14) the 
first-order approximation in contrast to the zero-order 
approximation when the mutual impact of all the coherent 
noise wavetrains is neglected (Tyapkin et al., 2007). 
 
Synthetic data examples 

In practice, it is difficult to find a reliable source of 
information on the variances of random noise and the 

amplitudes of coherent components of the seismic data. For 
this reason, when testing the method, we used synthetic 
data with these parameters being trace-independent. In this 
case optimum weighted stack turns into straight stack. 

The proposed method is demonstrated on a synthetic data 
set containing a signal aligned in time. The signal is 
contaminated with two linear coherent noise wavetrains of 
dips 1ms and -1ms per trace and of various relative, in 
regard to the signal, amplitudes ranging from 1 to 16. The 
waveforms of all the coherent components were generated 
by convolution of independent stochastic processes with a 
20Hz Ricker wavelet. Each synthetic record consists of 21 
traces. 

Figure 1 shows the entire record along with its components 
for the noise-to-signal ratio 4:1. The amplification factor 
for visualization of the coherent noise and entire data was 
chosen as one fourth of that for the signal. 

In Fig. 2a, we demonstrate the result of subtracting 
coherent noise from the data depicted in Fig. 1d using the 
zero-order approximation. It is clearly seen that the residual 
record differs considerably from the ‘pure’ signal, ten 
traces of which are put in the right-hand side of each record 
here and in Fig. 3 for comparison. This distinction is also 
confirmed by the difference between the residual data and 
the signal (Fig. 2b), which has higher amplitudes than the 
signal. For this reason, the ultimate signal approximation 
yields a poor result and one can see a contrasting boundary 
between the signal and its estimate in Fig. 2c. 

A much better result is obtained using the first-order 
approximation (Fig. 3). This advanced procedure subtracts 
coherent noise almost perfectly (Fig. 3a), which is also 
confirmed by much lower amplitudes of the difference 
between the result of noise subtraction and the signal (Fig. 
3b). As a result, one can hardly find the boundary between 
the signal and its estimate in Fig. 3c. 

The advantage of the first-order approximation over the 
zero-order approximation is demonstrated quantitatively 
with the coefficient of correlation between the signal and 
its estimates as a function of the noise-to-signal ratio (Fig. 
4). It is always higher for the advanced procedure. 
 
Conclusions 

The method developed can be a valuable tool in processing 
surface and borehole seismic data. The results of its testing 
on synthetic data sets, some of which are demonstrated, 
indicate that in many circumstances when estimating signal 
contaminated by severe coherent noise our method can 
significantly outperform simplified approaches and may 
therefore be prescribed as a better choice than conventional 
processes. The aim of our future work is to supply the 
proposed method with reliable estimates of the required 
parameters, without which it can not operate effectively. 
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Figure 1: (a) Signal, (b) positively and (c) negatively dipping 

coherent noise and (d) entire data for the noise-to-signal ratio 4:1 
 

 
Figure 4: Correlation coefficients of the signal and its estimates 

obtained using advanced (solid line) and simplified (dashed line) 
procedures as a function of the noise-to-signal ratio 

 
Figure 2: (a) Result of subtracting the coherent noise using the 

zero-order approximation, (b) difference between the residual data 
and the signal, (c) final signal estimate 

 

 
Figure 3: (a) Result of subtracting the coherent noise using the 

first-order approximation, (b) difference between the residual data 
and the signal, (c) final signal estimate 

3277SEG Houston 2009 International Exposition and Annual Meeting

Main Menu



EDITED REFERENCES  
Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2009 
SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for 
each paper will achieve a high degree of linking to cited sources that appear on the Web.  
  
REFERENCES  
Bekara, M., and M. Van der Baan, 2006, Local SVD/ICA for signal enhancement of pre-stack seismic data: 68th Annual 

Conference and Exhibition, EAGE, Extended Abstracts, D038. 
Cassano, E., and F. Rocca, 1974, Multichannel filters without mixing effects: Geophysical Prospecting, 22, 330–344. 
Gounon, P. Y., J. I. Mars, and D. Goncalves, 1998, Wideband spectral matrix filtering: 68th Annual International Meeting, SEG, 

Expanded Abstracts, 1150–1153. 
Hanna, M. T., and M. Simaan, 1985, Optimum simultaneous suppression of coherent and random noise in seismic data: 55th 

Annual International Meeting, SEG, Expanded Abstracts, 627–629. 
Helstrom, C. W., 1968, Statistical theory of signal detection: Pergamon Press, Inc. 
Horn, R. A., and C. R. Johnson, 1986, Matrix analysis: Cambridge Univ. Press. 
March, D. W., and A. D. Bailey, 1983, A review of the two-dimensional transform and its use in seismic processing: First Break, 

1, 9–21. 
Meyerhoff, H. J., 1966, Horizontal stacking and multichannel filtering applied to common depth point seismic data: Geophysical 

Prospecting, 14, 441–454. 
Mitchell, A. R., and P. G. Kelamis, 1990, Efficient tau-p hyperbolic velocity filtering: Geophysics, 55, 619–625.  
Schoenberger, M., 1996, Optimum weighted stack for multiple suppression: Geophysics, 61, 891–901. 
Trickett, S., 2003, F-xy eigenimage noise suppression: Geophysics, 68, 751–759. 
Tyapkin, Y., and B. Ursin, 2005, Optimum stacking of seismic record with irregular noise: Journal of Geophysics and 

Engineering, 2, 177–187. 
Tyapkin, Y., B. Ursin, Y. Roganov, I. Nekrasov, and G. Shumlyanskaya, 2007, Least-squares signal estimation with complicated 

mathematical models of seismic data: 69th Annual Conference and Exhibition, EAGE, Extended Abstracts, P026. 
Ulrych, T. J., M. D. Sacchi, and J. M. Graul, 1999, Signal and noise separation: Art and science: Geophysics, 64, 1648–1672. 
Vrabie, V. D., J. I. Mars, and J. L. Lacoume, 2004, Modified singular value decomposition by means of independent component 

analysis: Signal Processing, 84, 645–652. 
Zhu, W., P. G. Kelamis, and Q. Liu, 2004, Acquisition/processing—Linear noise attenuation using local radial trace median 

filtering: The Leading Edge, 23, 728–737. 
 

3278SEG Houston 2009 International Exposition and Annual Meeting

Main Menu


