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Summary 
 
 
In this dissertation we have developed multiple networks systems (multi 

nets or committee machines, CM) for predicting reservoir properties e.g. 
porosity, permeability, partial fluid saturation and for identifying lithofacies from 
wireline and measurement while drilling (MWD) logs. The method is much more 
robust and accurate than a single network and the multiple linear regression 
method. The basic unit of a committee machine is a multilayer perceptron 
network (MLP) whose optimum architecture and size of training dataset has been 
discovered by using synthetic data for each application. The committee machine 
generated for each property has been successfully applied on real data for 
predicting the reservoir properties and analysing the lithofacies in the Oseberg 
field, one of the major fields of the North Sea. The advantage of this technique is 
that it can be used in real time and thus can facilitate in making crucial decisions 
on the reservoir while drilling. The trained networks have been successfully used 
in bulk conversion of wireline and MWD logs to reservoir properties. All the 
programming has been done using MATLAB programming language and 
different functions from the neural network toolbox. 

 
For porosity prediction we have made a study initially with a single neural 

network and then by the CM approach. We have demonstrated the benefits of 
committee neural networks where predictions are redundantly combined.  
Optimal design of the neural network modules and the size of the training set 
have been determined by numerical experiments with synthetic data.  With three 
inputs i.e. sonic, density and resistivity, the optimal number of hidden neurons for 
the porosity neural network has been determined to be in the range 6-10, with a 
sufficient number of training patterns of about 150. The network is sensitive to 
the fluid properties.  The unconstrained optimal linear combination of Hashem 
(1997), with zero intercept term based on least squares, is the most suitable 
ensemble approach for the porosity CM and the accuracy is mainly limited by the 
accuracy of the training patterns and the accuracy of the log data themselves. In 
application to real data the maximum standard error of the difference between 
prediction and helium core porosity data is 0.04. The benefit of neural networks 
compared with the multiple linear regression (MLR) technique has been briefly 
touched upon by showing that MLR fails to reproduce the minor non-linearity 
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embedded in the common log-to-porosity transforms, whereas the neural network 
reproduces the same data with high accuracy.  

 
In permeability prediction by CM we have demonstrated the benefits of 

modularity by decomposing the permeability range into a number of sub-ranges 
to increase resolution. We have used synthetic data for evaluating the optimal 
architecture of the component neural networks. With the four inputs; i.e. sonic, 
density, gamma and neutron porosity, we find that optimal number of hidden 
units of the permeability neural network is confined to the range 8-12 where the 
variance and bias are at their minima.  In general, the errors steadily decrease 
with the number of training facts.  A practical lower limit has been set to 300, or 
twice the size of the training set required for the porosity network due to the 
increased complexity of the background relationships with the log readings. 

 
Since we use a logarithmic permeability scale rather than a linear scale, 

the success of optimal linear combination (OLC) in the porosity CM is not 
repeated when it is applied to the permeability CM.  In fact noise amplification 
takes place.  Simple ensemble averaging is shown to be the preferred method of 
combining the outputs. A different training strategy must be applied i.e. the 
validation approach, requiring the training to stop when the level of minimum 
variance has been reached. Provided that precautions are taken, the permeability 
CM is more capable of handling the non-linearity and noise than MLR and a 
single neural network.  The benefit of range splitting, using the modularity 
imbedded in the CM approach, has been demonstrated by resolving details in the 
combination of logs that otherwise would be invisible.  In application to real data 
a minimum standard deviation error of the difference between prediction and 
Klinkenberg corrected air permeability data is around 0.3 in logarithmic units (of 
mD), mainly due to limitations in the techniques of measurement.  

 
 We have developed and tested a modular artificial neural network system 
for predicting the fluids water, oil and gas, and their partial saturations directly 
from well logs, without explicit knowledge of the fluid and rock properties 
normally required by conventional methods. For inputs to the networks we have 
used the density, sonic, resistivity and neutron porosity logs. From synthetic logs 
based on a realistic petrophysical model we have determined by numerical 
experiments the optimal architecture, and network training procedure for partial 
fluid saturation.   

 
The output of three saturations from a single MLP (4-10-3) reveals the 

same accuracy as those of three individual MLPs with one output (4-4-1). The 
latter has the advantage of simplicity in terms of number of neurons, which 
implies fewer training patterns and faster training.  Moreover, simplicity in the 
MLP improves modularity when used for building blocks in the multi-net system. 
For the optimal 4-4-1 MLP the number of training patterns should be in excess of 
100 to ensure negligible errors in the case of data with moderate noise. A 
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committee neural network for each fluid type is the preferred solution, with each 
network consisting of a number of individually trained 4-4-1 MLPs connected in 
parallel and redundantly combined using optimal linear combination compared 
with a single MLP realisation. The OLC approach implies an overall error 
reduction by an order of magnitude. 
 
 Based on these findings we have made a modular neural network (MNN) 
system consisting of three CMs; one for each fluid type, where each CM contains 
nine MLPs connected in parallel, and with outputs that are combined using the 
OLC approach.  Using training patterns from CPI logs we have demonstrated its 
application to real data from North Sea reservoirs containing the full range of 
fluid types and partial saturation. The saturation predictions from the fluid CMs 
are further combined in a MNN with the laboratory measured relative 
permeability curves for both the oil-water and gas-oil fluid systems to generate 
relative permeability logs. 
  
 The accuracy in prediction saturation essentially depends on the accuracy 
of the training patterns, which are from the computer processed interpretation 
(CPI) logs, and the accuracy of the individual log measurements.  The idea of 
using neural networks for fluid saturation is thus not to eliminate the careful 
petrophysical evaluation behind the CPI log, but to transfer into the neural 
network for future application the effort and expertise already imbedded in the 
petrophysical database. Comparison of Sw values of the neural network with those 
of CPI logs, in wells that are unknown to the network, indicates a standard error 
of less than 0.03.   

 
The problem of identification of lithofacies from well logs is a pattern 

recognition problem. The CM architecture is based on combining back 
propagation artificial neural networks (BPANN) with a recurrent BPANN (R-
BPANN) adopted from time series analysis. The recurrent BPANN exploits the 
property of facies i.e. it consists of several sequential points along the well bore 
thus effectively removing ambiguous or spurious classification. The multiclass 
classification problem has been reduced to a two-class classification problem by 
using the modular neural network system. Ensembles of neural networks are 
trained on disjoint sets of patterns using a soft overtraining approach for ensuring 
diversity and improving the generalisation ability of the stack. 

 
We have used synthetic logs from a realistic model with a very small layer 

contrast and moderate noise level and we found an excellent classification 
performance only slightly less than 100% hit rates. By introduction of fine 
layering in the model we have shown that the performance is only slightly 
reduced, demonstrating excellent performance of the RBPANN for layer 
enhancement, also in the case of thin layers. Classification from real data is more 
challenging since the facies in the present study were initially defined by visual 
inspection of cores, and thus not fully compatible with the readings of the logging 
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tools, which detect different physical properties and have coarser spatial 
sampling.   Application to the four facies of the Ness Formation reveals an 
average hit-rate well above 90% in wells unknown to the network.  Compared 
with similar published classification studies our results reveal slightly to 
significantly better performance. 

 
The CM approach for porosity, permeability and water saturation is 

developed and tested on MWD data also. We trained CM architecture for 
porosity, permeability and water saturation using MWD data. Since cores are 
normally not collected in horizontal well the patterns for MWD networks are 
predictions made by wireline networks. The application of this technique is to 
predict reservoir properties while drilling.  
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Chapter 1 
Introduction 
 

Many forms of heterogeneity in rock properties are present in clastic 
petroleum reservoirs. Understanding the form and spatial distribution of these 
heterogeneities is important in petroleum reservoir evaluation.  Porosity, 
permeability and fluid saturation are the key variables for characterising a 
reservoir in order to estimate the volume of hydrocarbons and their flow patterns 
to optimise production of a field.  These are different for different rocks. 
Lithofacies are defined as a lateral mappable subdivision of a designated 
stratigraphic unit, distinguished from adjacent subdivisions on the basis of 
lithology, including all mineralogical and petrographical characters and those 
paleontological characters that influence the appearance, composition or texture 
of the rock. Thus identification of lithofacies is an important task in knowing the 
heterogeneity of the reservoir.   
 

Porosity is described as the ratio of the aggregate volume of interstices in a 
rock to its total volume whereas the permeability is defined as the capacity of a 
rock or sediment for fluid transmission, and is a measure of the relative ease of 
fluid flow under pressure gradients. Knowledge of permeability in formation 
rocks is crucial to oil production rate estimation and to reservoir flow simulations 
for enhanced oil recovery. Reliable predictions of porosity and permeability are 
also crucial for evaluating hydrocarbon accumulations in a basin-scale fluid 
migration analysis and to map potential pressure seals to reduce drilling hazards. 
 

There is no well log which can directly determine porosity and hence it is 
measured on cores in the laboratory. This is an expensive exercise and hence is 
not a routine operation in all drilled wells. Several relationships have been 
offered which can relate porosity to wireline readings such as the sonic transit 
time and density logs.  However, the conversion from density and transit time to 
equivalent porosity values is not trivial (Helle et al., 2001).  The common 
conversion formulas contain terms and factors that depend on the individual 
location and lithology e.g. clay content, pore fluid type, grain density and grain 
transit time for the conversion from density and sonic log, respectively, that in 
general are unknowns and thus remain to be determined from rock sample 
analysis.  
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Permeability is also recognised as a complex function of several 
interrelated factors such as lithology, pore fluid composition and porosity. It can 
be measured directly from pressure test in wells and on cores in the laboratory. 
Although these are important methods neither of them is good enough to allow 
them to be widely used owing to technical and financial reasons. The routine 
procedure in the oil industry has been to estimate it from well logs. The 
permeability estimates from well logs often rely upon porosity e.g. through the 
Kozeny-Carman equation or Wyllie and Rose model (Wyllie and Rose, 1950) 
which contains adjustable factors such as the Kozeny constant that varies within 
the range 5-100 depending on the reservoir rock and grain geometry (Rose and 
Bruce, 1949).  Nelson (1994) gives a detailed review of these problems.  
 

Helle et al. (2001) demonstrated that instead of a single log a group of logs 
should be used to compute a petrophysical property provided there is a 
relationship between the property and the logs.  Similar opinions have been 
emphasised in Wendt et al. (1986). They reported a study of permeability 
prediction by using multiple linear regression techniques. The study 
demonstrated that the correlation coefficient between the predicted and the actual 
permeability increases as other logs and log-derived parameters than porosity are 
included in the prediction for permeability.  
  

Finding the distribution and composition of subsurface fluids is another 
main objective in hydrocarbon exploration, field development and production.  
Since direct sampling of underground fluids and determination of fluid saturation 
in the laboratory is an expensive and time-consuming procedure, indirect 
determination from log measurements is the common approach. The common 
practice in the industry is to determine water saturation from empirical formulas 
using resistivity, gamma ray logs and porosity estimates. The hydrocarbon 
saturation is then calculated from water saturation as both water and hydrocarbon 
form the composite pore fluid.  Apart from the convenience and financial 
benefits, methods based on log measurements imply the technical advantage of 
providing a continuous record and sampling of a larger rock volume.  Fluid 
evaluation from log data and accurate conversion of the logs to fluid saturation 
values thus also constitute important tasks in reservoir characterisation.  

 
The standard practice in industry for calculating water saturation is by 

using different saturation models. But these models should be tuned to the area of 
work which requires the estimation of parameters in the laboratory. Thus it would 
be better to obtain water saturation from logs using neural networks without 
explicitly depending on the auxiliary parameters.   
 

Lithofacies defines a body of rock on the basis of its distinctive 
lithological properties, including composition, grain texture, bedding 
characteristics, sedimentary structures and biological features. The common 
practice in oil industry is to manually examine the various facies identified on 
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cores from well logs with the aid of graphical techniques such as cross plotting. 
This method is labour intensive and becomes cumbersome when the number of 
logs to be analysed simultaneously increases. Thus there are several advantages 
in making this method computerised while retaining the expert reasoning of an 
experienced geologist. 
 

Neural networks have been applied in a wide variety of fields to solve 
problems such as classification, feature extraction, diagnosis, function 
approximation and optimisation (e.g. Lawrence, 1994; Haykin, 1999). Although 
it seems clear that neural networks should not be used where an effective 
conventional solution exists, there are many tasks for which neural computing 
can offer a unique solution, in particular those where the data is noisy, where 
explicit knowledge of the task is not available or when unknown non-linearity 
between input and output may exist.   Artificial neural networks are most likely to 
be superior to other methods under the following conditions (Masters, 1993): 
 
i) The data on which a conclusion is based is “fuzzy”, or is subject to 
possibly large errors. In this case the robust behaviour of neural networks is 
important. 
 
ii)  The patterns important to the required decision are subtle or deeply 
hidden.  One of the principal advantages of a neural network is its ability to 
discover patterns in data, which are so obscure as to be imperceptible to the 
human brain or standard statistical methods. 
 
iii) The data exhibits significant unpredictable non-linearity.  Neural nets are 
marvellously adaptable to any non-linearity. 
 
iv) The data is chaotic (in the mathematical sense).  Such behaviour is 
devastating to most other techniques, but neural networks are generally robust 
with input of this type. 
 

In many respects the above list summarises the features of conventional 
earth science data, and are the main reasons for the increasing popularity of ANN 
in geoscience and petroleum engineering (Mohaghegh, 2000; Nikravesh et al., 
2001).  
 

Neural networks for quantitative analysis of reservoir properties from well 
logs have been demonstrated in several practical applications (e.g. Huang et al., 
1996; Huang and Williamson, 1997; Zhang et al., 2000; Helle et al., 2001), where 
the artificial neural network approach is shown to be a simple and accurate 
alternative for converting well logs to common reservoir properties such as 
porosity and permeability.    Single multilayer perceptrons (MLP) consisting of 
an input layer, a hidden layer and an output layer, trained by a back-propagation 
algorithm (e.g. Levenberg-Marquardt, see Hagan et al., 1996) have been the 
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conventional work horse for most practical applications over the last decade. 
Back-propagation learning techniques have been shown to be universal 
approximators (e.g. White, 1992), implying that they will approximate any static 
function provided sufficiently representative input-output sample pairs of the 
function are given.   However, the concomitant disadvantage of their ability to 
generalise beyond the set of examples on which they were trained, is that they are 
likely to make errors.   
 

If we accept that neural networks are unlikely to generalise perfectly to all 
possible test cases, we have good reason for exploring ways of improving the 
performance of neural networks.  A single MLP, when repeatedly trained on the 
same patterns, will reach different minima of the objective function each time and 
hence give a different set of neuron weights.   A common approach therefore is to 
train many networks, and then select the one that yields the best generalisation 
performance.  However, since the solution is not unique for noisy data, as in most 
geophysical inversion problems, a single network may not be capable of fully 
representing the problem at hand.  Selecting the single best network is likely to 
result in loss of information since, while one network reproduces the main 
patterns, the others may provide the details lost by the first. The aim should thus 
be to exploit, rather than lose, the information contained in a set of imperfect 
generalisers. This is the underlying motivation for the committee neural network 
approach, or committee machine, where a number of individually trained 
networks are combined, in one way or another, to improve accuracy and increase 
robustness.  An important observation (Naftaly et al., 1997) is that a committee 
can reduce the variance of the prediction while keeping the bias constant, 
whereas Hashem, (1997) proposed unconstrained optimal linear combination to 
eliminate the bias.  
 

Helle et al. (2001) demonstrated the prediction of porosity and 
permeability using single neural network. While using the committee machine 
approach Bhatt and Helle (2001a) have demonstrated improved porosity and 
permeability predictions from well logs using ensemble combination of neural 
networks rather than selecting the single best by trial and error. Helle and Bhatt 
(2001) successfully applied the ensemble approach to predict partial fluid 
saturation. Bhatt and Helle (2001b) successfully applied a committee machine 
using a combination of back propagation neural network and recurrent neural 
network for the identification of lithofacies. 
 

In this dissertation we have devised a technique using neural networks for 
predicting porosity, permeability, fluid saturation and identifying lithofacies from 
log data. The technique utilises the prevailing unknown relationship in data 
between well logs and the reservoir properties. It utilises the ability of neural 
network to discover patterns in the data important for the required decision, 
which may be imperceptible to human brain or standard statistical methods. The 
method is better than the commonly practised technique in industry because it 
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does not require a deep geological knowledge of the area and is much faster to 
use than the standard statistical methods. It is more robust and accurate than the 
standard multiple linear regression technique. This technique makes the 
identification of lithofacies much simpler in comparison to manual identification 
specially when the number of logs to be analysed increases. Thus the idea of this 
dissertation is not to eliminate the interpretation from an experienced 
petrophysicist but to make the task simpler and faster for future work. 
 

Thus in this study we have explored the capabilities of back propagation 
neural networks on synthetic and real data. The study shows the applications of 
neural networks in predicting reservoir properties with a short introduction to 
neural networks and the modular neural networks in Chapter 2. In all the 
applications synthetic data has been utilised for determining the optimal 
architecture of the network.   In Chapter 3 we compare the prediction of porosity 
using a single neural network with that of the committee machine approach. The 
optimal architecture of the network was then applied to real data. We concluded 
that the optimal linear combination (OLC) approach (Hashem, 1997) is the best 
for porosity prediction.  In Chapter 4 we discuss the different factors affecting the 
permeability and the reasons for the difference between the predicted and the core 
permeability. We demonstrate a comparison of the prediction of permeability 
using a single neural network with that of the committee machine approach. In 
Chapter 5 a committee machine has been devised to predict partial fluid 
saturation, which was further utilised for generating relative permeability logs. In 
Chapter 6 we devised a committee machine using back propagation and a 
recurrent back propagation neural network for predicting lithofacies within the 
Ness formation of the Oseberg field. The chapter discusses the method of 
identifying three lithofacies using synthetic data when the contrast between the 
lithofacies is only 1.25% of the contrast between sand and shale. BPANN leaves 
some overlapping in lithofacies, which are further, reduced by using RBPANN 
by utilising the past and the future predicted lithofacies and the past logs. The 
misclassification in predictions reduced from 6.74% to 2.89% by the application 
of RBPANN. The same technique is then applied to real data for identification of 
lithofacies within the Ness formation. In Chapter 7 we applied the committee 
machine architecture for predicting porosity, permeability and fluid saturation on 
measurement while drilling data. The individual networks for measurement while 
drilling were trained on patterns generated from wireline networks in the absence 
of core data. The main aim behind this approach is to determine the reservoir 
properties while drilling. Chapter 8 is the final conclusion of the thesis and 
contains suggestions for future work. 
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Chapter 2 
Neural networks 
 
2.1 Introduction 
 

A neural network can be described as a massively parallel-distributed 
processor made up of simple processing units called neurons, which has a natural 
tendency for storing experiential knowledge and making it available for use. It 
resembles the human brain in the following respects: (i) knowledge is acquired 
by the network from its environment through a learning process (ii) interneuron 
connection strengths, known as synaptic weights, are used to store the acquired 
knowledge. 

 
The human brain is a very complex, non-linear and parallel computer 

system, which is capable of thinking, remembering and problem solving. It has 
the capability to organise its structural constituents known as neurons so as to 
perform certain computations e.g. pattern recognition, perception etc. much faster 
than a computer. There have been many attempts to emulate brain functions with 
computer models and although there have been some spectacular achievements 
coming from these efforts, all of the models developed to date pale into oblivion 
when compared with the complex functioning of the human brain. 
  

The fundamental cellular unit of the brain's nervous system is a neuron.  It 
is a simple processing element that receives and combines signals from other 
neurons through input paths called dendrites.  If the combined input signal is 
strong enough then the neuron fires, producing an output signal along the axon 
that connects to the dendrites of many other neurons. Figure 2.1 is a sketch of a 
biological neuron showing its various components.  Each signal coming into a 
neuron along a dendrite passes through a synapse or a synaptic junction.  This 
junction is an infinitesimal gap in the dendrite that is filled with neuro-transmitter 
fluid that either accelerates or retards the flow of electrical charges.  The 
fundamental actions of the neuron are chemical in nature, and this fluid produces 
electrical signals that go to the nucleus or soma of the neuron.  The adjustment of 
the impedance or conductance of the synaptic gap is a critically important 
process.  These adjustments lead to memory and learning. As the synaptic 
strengths of the neurons are adjusted the brain learns and stores information. 
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   Figure 2.1: Schematic of a biological neuron 
 
 

2.2 Neuron Model 
 

A biological neuron is a fundamental unit of the brain's nervous system. 
Similarly, an artificial neuron is a fundamental unit to the operation of the neural 
network.  The block diagram of Figure 2.2 shows the model of a neuron. Its basic 
elements are:          
 
i) A set of synapses or connecting links, each of which is characterised by a 
weight of its own.  A signal xj at the input of synapse j connected to neuron k is 
multiplied by the synaptic weight wkj.  
 
ii) An adder for summing the input signals, weighted by the respective synapses 
of the neuron. 
 
iii) An activation function for limiting the amplitude of the output of a neuron.  It 
limits the permissible amplitude range of the output signal to some finite value.  
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The neuronal model also includes an externally applied bias, bk which has the 
effect of increasing or lowering the net input of the activation function, 
depending on whether it is positive or negative respectively. 

Figure 2.2: Model of a neuron 
 
Mathematically the function of the neuron k can be expressed by 
 

( )k k ky u bϕ= +     (2.1) 
where 

        
1

m

k kj j
j

u w x
=

= ∑      (2.2) 

         
xj is the input signal from an m dimensional input, wkj is the synaptic weights of 
neuron k, uk is the linear combiner output due to the input signals, bk is the bias, 

( )ϕ ⋅  is the activation function, and yk is the output signal of the neuron.  The 
relation between the linear combiner output uk and the activation potential vk is  
 

k k kv u b= +        (2.3) 
 
 The activation function ( )vϕ  defines the output of a neuron in terms of the 
induced local field v .  The three most common activation functions are: 
 
i) Hardlimit function 
 

( ) 1 if 0
0 if 0{v v

νϕ ≥= <
  
         (2.4) 
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The output of neuron k employing such a function is expressed by 
 

 
 

1 if 0
0 if 0{ k

k
k

vy v
≥= <

  
      (2.5) 

  
A symmetrical hard limit function is described as  
 

( ) 1 if 0
if 0{ vv vϕ + ≥= <
  

-1        (2.6) 
 
which is most commonly used in pattern recognition problems. 
 
ii) Linear function 
 

( )v vϕ =      (2.7) 
 
The output of a linear transfer function is equal to its input.  This activation 
function is used in pattern recognition and in function approximation problems. 
 
iii) Sigmoid function 
 

This is the most common form of activation function used in the 
construction of multilayer networks that are trained using back-propagation 
algorithm because it has the feature of being non-decreasing and differentiable 
and its range is 0 ≤ ( )vϕ ≤ 1.  An example of the sigmoid function is  
 

( ) ( )
1

1
v

av
ϕ =

+ −exp    (2.8) 

 
where a is the slope parameter of the sigmoid function.  The slope at the origin 
equals a/4. In the limit as the slope parameter approaches infinity the sigmoid 
function becomes a threshold function.  A sigmoid function has a continuous 
range of values from 0 to 1 (Figure 2.3).  Sometimes it is desirable to have the 
activation function range from -1 to +1 in which case the activation function 
assumes an antisymmetric form with respect to the origin.  Then ( )vϕ can be 
given by hyperbolic tangent function defined by 
 

( ) ( )v vϕ =tanh     (2.9) 
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   Figure 2.3: Sigmoid function  
 
 

2.3 Network architectures 
 
 

Warren McCulloch and Walter Pitts (Mculloch and Pitts, 1943) introduced 
one of the first models of an artificial neuron.  The main feature of this model is 
that the weighted sum of input signals is compared with a threshold to determine 
the neuron output.  When the sum is greater than or equal to the threshold, the 
output is 1. When the sum is less than the threshold the output is 0.  They showed 
that this architecture could in principle compute any arithmetic or logical 
function.  But as there was no training algorithm available the parameters of their 
networks had to be designed manually, unlike biological networks.  
 

In late 1950s Frank Rosenblatt (Rosenblatt, 1958) and several other 
researchers developed a class of neural networks called perceptrons.  The neurons 
in these networks were similar to those of McCulloch and Pitts but the key 
contribution of Rosenblatt was the introduction of a learning rule for training 
perceptron networks to solve pattern recognition problems.  He proved that his 
learning rule will always converge to the correct network weights, provided such 
weights exist.  The learning was simple and automatic.  The perceptron was even 
able to learn when initialised with random values for its weights and biases.   
 

2.3.1 Learning 
 

A learning rule or training algorithm, is the procedure for modifying the 
weights and biases of a network.  There are many types of learning algorithms 
that can be arranged into three main classes: 

 
(i) Supervised learning: The learning rule is provided with a set of examples of 
proper network behaviour with inputs and outputs.  As the inputs are applied to 
the network, the network outputs are compared to the targets.  The learning rule  
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is then used to adjust the weights and biases of the network in order to move the 
network outputs closer to the targets. 
 
(ii) Reinforcement learning: This is similar to supervised learning except that 
instead of being provided with a correct output for each network input the 
algorithm is only given a grade.  The grade is a measure of the network 
performance over some sequence of inputs.  
 
(iii) Unsupervised learning: In this type of learning the weights and biases are 
adjusted in response to network inputs only.  There are no target outputs 
available. Most of these algorithms perform some kind of clustering operation.  
They learn to categorise the input patterns into a finite number of classes. 
 

2.3.2 Perceptron architecture 
 

A single neuron perceptron architecture is very similar to that shown in 
Figure 2.2. It has a hardlimit transfer function.  The output of this network is given 
by 
 

( )Ty b= +w xhardlim     (2.10) 

 
 where w is the weight vector and x is the input vector.  For each neuron there 
will be one decision boundary for classifying the inputs given by 
 

0T b+ =w x      (2.11) 
 

A single perceptron can classify the input vectors into two categories only since 
its output can be either 0 or 1.  This is the limitation of the perceptron 
architecture.  A multiple perceptron architecture can classify inputs into many 
categories.  The network weights are adjusted by supervised learning algorithm.  
Let D be a training set consisting of n inputs and outputs such that if d is the 
desired output and y is the computed output then the error e for kth iteration is 
given by 
 

( ) ( ) ( )e k  = d k  - y k     (2.12) 
 
and the adjustments to weights and bias is given by 

 
( ) ( ) ( ) ( )1k k e k k+ = +w w x   (2.13) 

 
 

( ) ( ) ( )1 = + b k b k e k+    (2.14) 
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The perceptron learning rule is simple and powerful.  It always converges to 
weights that accomplish the desired classification.  However the limitation of a 
single perceptron network is that it can only classify the input vectors that can be 
separated by a linear boundary since its output can be either 0 or 1. 

 

2.3.3 ADALINE architecture 
 

Bernard Widrow and Hoff (1960) introduced the ADALINE (ADAptive LInear 
NEuron) network which is very similar to perceptron. The transfer function of 
ADALINE is linear, unlike the perceptron (Figure 2.2) and the output of the 
network is given by 
 

( )  Ty b= +w xpurelin    (2.15) 

 
where the decision boundary is same as given by equation (2.11).  The learning 
algorithm for ADALINE is known as the Delta rule or least mean square (LMS) 
algorithm.  It is also an example of supervised training.  The algorithm will adjust 
the weights and biases of the ADALINE architecture by minimising the mean 
square error between the targeted output and the computed output, defined by   
 

( ) ( )222 TE e E d y E d    = − = −      
w x  (2.16)  

 
The LMS algorithm finds the minimum point of the mean square error 

using the steepest descent algorithm (Hagan et al.1996).  The adjustments to 
weights and bias using LMS algorithm for kth iteration is given by  

 
( 1) ( ) 2 ( ) ( )k k e k kη+ = +w w x    (2.17) 

 
( 1) ( ) 2 ( )b k b k e kη+ = +     (2.18) 

 
where η is a constant known as learning factor.  

  
Both the ADALINE and the perceptron have the same limitation that they 

could classify only linearly separable problems.  The LMS algorithm is however 
more powerful than the perceptron learning rule.  While the perceptron rule is 
guaranteed to converge to a solution that correctly categorises the training 
patterns, the resulting network can be sensitive to noise since patterns often lie  
 
close to the decision boundaries.  The LMS algorithm minimises the mean square 
error and therefore tries to move the decision boundaries as far from the training 
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patterns as possible.  The LMS algorithm has many more applications than the 
perceptron learning rule, particularly within the area of digital signal processing.  
 

The LMS algorithm is optimal for a single neuron because the mean 
squared error surface for a single neuron has only one minimum point and 
constant curvature, providing a unique solution. For a multilayer perceptron 
network, on the other hand, the error surface may have many local minima and 
the curvature can vary widely in different regions of the parameter space.    

 
Thus the LMS algorithm fails to produce a unique solution in multilayer 

networks.  It does not specify how to adjust the weights for interior layer units 
during learning.  In multilayer networks this is known as the credit assignment 
problem. There is no clear way in which to assign credit or blame to the internal 
layer unit weights for the reduction of output unit errors.  The credit assignment 
problem was solved using the error back-propagation (BP) method (Hagan et al., 
1996) which is a generalisation of the LMS algorithm. 

 

2.3.4 Multilayer perceptron 
 

The multilayer perceptron (MLP) networks are currently the most widely 
used neural networks.  These networks can do the classification for patterns 
having nonlinearly separable boundaries since the network consists of many 
neurons.  It consists of an input layer one or more internal layers of hidden 
neurons and an output layer.  They are also called multilayer feed forward 
networks (MLFF).  A 3-layer MLP network is shown in Figure 2.4.  The hidden 
layers are also called internal layers as they receive internal inputs i.e. inputs 
from other processing units and produce internal outputs i.e. outputs to other 
processing units.  Consequently they are hidden from the outside world.  The 
network is provided with a training set of patterns having inputs and outputs.  
Real valued m –dimensional input feature vectors x are presented to each of the 
first hidden layer units through weight vector w.  Hidden layer unit k receives 
input j through the synaptic weight, wkj, k = 1,2,….,h, and  j = 1,2,….,m.  Unit k 
computes a function of the input signal x and the weights wkj and passes its output 
forward to all of the units in the next successive layer. Like the first hidden layer, 
the units of the second hidden layer are fully connected to the previous layer 
through the synaptic weights.  These units also compute a function of their inputs 
and their synaptic weights and pass their output on to the next layer.  The output 
of one layer becomes the input to the following layer.  Then at the output unit 
error is calculated between the target value and the computed value of the pattern.   
 
This process is repeated until the final computation is produced by the output 
unit.  The learning algorithm for this type of network is called the back-
propagation (BP) algorithm which was published in the mid 1980s for multilayer 
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perceptrons.  This architecture of the network is the basic unit in this study.  
Hornik et al. (1989) suggested that if a sufficient number of hidden units are 
available then an MLP with one hidden layer having a sigmoid transfer function 
in the hidden layer and a linear transfer function in the output layer can 
approximate any function to any degree of accuracy. 

 

Figure 2.4:  A multi layer perceptron network  (superscript denotes the number of 
layer) 

 
The BP algorithm is the generalisation of the LMS algorithm using the 

mean square error as the cost function.  The mean square error is minimised 
iteratively using the steepest descent algorithm.  The difference between the BP 
algorithm and the LMS algorithm lies in the way in which the gradient of the 
error is calculated.  The BP algorithm uses the chain rule in order to compute the 
derivatives of the squared error with respect to the weights and biases in the 
hidden layers.  It is called back-propagation because the derivatives of the 
squared error are computed first at the last layer of the network and are then 
propagated backwards through the network using the chain rule to compute the 

1x  

2x  

mx  

y  2
1ν

( )ϕ ⋅  

+1

1

1ν

1

2ν

1

hν 1
hy

1
2y

1
1y( )ϕ ⋅

( )ϕ ⋅

( )ϕ ⋅

∑

2

1hw

2

10w2

11w
2

12w

∑
1

1mw  

1

10w  1

11w  
1

12w  

+1 

∑
1

2mw  

1

20w  1

21w  
1

22w  

+1 

∑
1

hmw  

1

0hw  1

1hw  
1

2hw  

+1 



16                                                                                             Chapter2. Neural networks 

derivatives in the hidden layer.  In BP learning the backward linkages are used 
only for the learning phase, whereas the forward connections are used for both 
the learning and the operational phases.  The process is repeated a number of 
times for each pattern in the training set until the total output squared error 
converges to a minimum or until some limit is reached in the number of training 
iterations.   
 

One of the major problems with BP algorithm has been the long training 
times due to the steepest descent method, as it is a simple but slow minimisation 
method.  The learning rate is sensitive to the weight changes. The smaller is the 
learning rate the smaller will be the changes to the synaptic weights from one 
iteration to the next, and the smoother will be the trajectory in the weight space.  
On the other hand, if the learning rate is chosen too large in order to speed up the 
rate of learning, the resulting large changes in the synaptic weights make the 
network unstable.  In order to speed up the convergence of BP algorithm, along 
with improved stability, a momentum term is added to the weight update of the 
BP algorithm.  A momentum term is simple to implement and this significantly 
increases the speed of convergence. The inclusion of momentum term represents 
a minor modification to the weight update.  The inclusion of momentum may also 
have the benefit of preventing the learning process from terminating in shallow 
local minima on the error surface.  

 
The second method of accelerating BP algorithm is by using Levenberg-

Marquardt BP (LMBP) algorithm (Hagan et al., 1996).  It is based on Newton’s 
optimisation method (Hagan et al., 1996) and differs from the usual BP algorithm 
in the manner in which the resulting derivatives are used to update the weights.  
The main drawback of the algorithm is the need for large memory and storage 
space of the free parameters in the computers.  If the network has more than a 
few thousand parameters the algorithm becomes impractical on current machines. 
In this study we have designed the network architecture such that the number of 
free parameters is smaller than the number of training patterns.  We have used the 
modular architecture of the network i.e. subdividing the task of one network into 
several networks.  The largest network size we have used in this study is for the 
permeability network consisting of 4 input neurons, 10 hidden neurons and 1 
output neuron, implying 65 free parameters  and therefore the LMBP algorithm 
was adequate for this study.  
 

While training a MLP by the back-propagation algorithm we compute the 
synaptic weights of a MLP by loading as many of the training examples as 
possible into the network.  The hope is that the neural network so designed will 
generalise.  A network is said to generalise well when the input – output mapping 
computed by the network is correct for test data which is unknown to the 
network.  A neural network that is designed to generalise well will produce a 
correct input-output mapping even when the input is slightly different from the 
examples used to train the network.  When however a neural network has too 
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many hidden neurons, the network may end up memorising the training data.  It 
may do so by finding a feature that is present in the training data (noise) but not 
true of the underlying function that is to be modelled. This phenomenon is 
referred to as overfitting.  Overfitting is the result of more hidden neurons than is 
actually necessary, with the result that undesired contributions in the input space 
due to noise are stored in synaptic weights.  However, if the number of hidden 
neurons is less than the optimum number than the network is unable to learn the 
correct input output mapping.  Hence it is important to determine the optimum 
number of hidden neurons for a given problem. 

 
Generalisation is influenced by three factors; i) the size of the training set 

ii) the architecture of the neural network and iii) the complexity of the problem at 
hand.  We cannot control the latter.  In the context of the first two for a good 
generalisation to occur we may vary the size of the training set by keeping the 
architecture of the network fixed or vice versa.  This problem can be resolved in 
terms of the Vapnik-Chervonenkis (VC) dimension which is a measure of the 
capacity or expressive power of the family of classification functions realised by 
a network.  It can be defined as the maximum number of training examples for 
which a function can correctly classify all the patterns in a test dataset (Patterson, 
1996).  The bounds specified by the VC dimension can be simply stated as 
following; if one wants an accuracy level of at least 90% then one should use ten 
times as many training examples as there are weights in the network.  The same 
has been suggested by Poulton (2001).  Baum and Haussler (1989) also stated the 
same that if we want to have an accuracy of  (1-e)  the number of training 

samples should be 
w
e

. In this study, keeping the above facts in mind we have 

used synthetic data to find the optimal number of training samples as well as the 
optimal number of hidden neurons. 
 
2.4 Network tasks 
 

Neural networks can be used to perform the two basic tasks of pattern 
recognition and function approximation.  

2.4.1 Pattern recognition 
 
 Pattern recognition is formally defined as the process whereby a received 
pattern or signal is assigned to one of a prescribed number of classes.  A neural 
network performs pattern recognition by first undergoing a training session, 
during which the network is repeatedly presented a set of input patterns along 
with the category to which each particular pattern belongs.  Later a new pattern is 
presented to the network that has not been seen before but which belongs to the 
same population of patterns used to train the network.  The network is able to 
identify the class of that particular pattern because of the information it has 
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extracted from the training data.  The pattern recognition performed by a neural 
network is statistical in nature with patterns being represented by points in a 
multidimensional decision space.  The decision space is divided into regions, 
each one of which is associated with a class.  The decision boundaries are 
determined by the training process.     
 
 This task can be performed by using either an unsupervised network or a 
supervised network.  For an unsupervised network the system is split into two 
parts; i) an unsupervised network for feature extraction and ii) a supervised 
network for classification.  Such a method follows the traditional approach to 
statistical pattern recognition.  Feature extraction is the process of transforming 
the input patterns into an intermediate smaller dimensional space thus simplifying 
the task of classification. Then classification is described as the process by which 
the intermediate patterns are mapped into one of the classes in an r-dimensional 
space where r is the number of classes to be distinguished. 

 
For a supervised network the system is designed as a multilayer perceptron  

network using a supervised learning algorithm.  The computational units in the 
hidden layer of the network perform the task of feature extraction and 
classification both based on the information it has extracted from the training 
data.  In this study for classification of lithofacies we use a supervised network 
for feature extraction and classification and a recurrent back propagation network 
for removing the ambiguities due to the overlapping within the classes. 
 

2.4.2 Function approximation 
 

Neural networks have the capability of doing a function approximation 
between inputs and outputs to a desired degree of accuracy.  Consider an input -
output mapping described by the functional relationship 

 
 

( )d f= x      (2.19) 
 
The function ( )f x is assumed unknown.  We are given a set of examples to map 
the function. 

( ){ } 1
, m

i i i
D d

=
= x         (2.20) 

 
We have to design a neural network that approximates the unknown ( )f x  such 
that the function ( )F x  describes the input - output mapping actually realised by 
the network  close enough to ( )f x  for all inputs such that 

 
( ) ( ) for allF f ε− <x x x      (2.21) 
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where ε  is a small positive number.  Provided that the size m of the training set 
is large enough and the network is equipped with an adequate number of free 
parameters then the approximation error ε  can be made small enough.  This 
function approximation problem can be best solved by using a neural network 
with supervised learning.  This ability of neural network is exploited in 
approximating an unknown relationship between the inputs and outputs.  In this 
study we have made a function approximation between the input logs and the 
reservoir properties such as porosity, permeability and water saturation. 
 
 
2.5 Bias variance dilemma 
 
 

A neural network can be trained to construct a function F(x), based on a 
training set D as given by equation (2.20) for the purpose of approximating d for 
previously unseen observations of x.  As discussed in Geman et al.,(1992) the 
dependence of the predictor F on the training data can be given by F(x;D).  Then 
the mean squared error of F as a predictor of d may be written as  

 

[ ]( )2( ; ) |DE F D E d −
 

x x                                          (2.22) 

 
where  ED is the expectation operator with respect to the training set D and E[d|x] 
is the target function.  The error decomposition gives the bias and variance as 
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  bias term                         variance term 
 
The bias and variance of a predictor can be estimated when the predictor is 

trained on different sets of data sampled randomly from the entire set.  The bias 
of a network is intuitively characterised as a measure of its ability to generalise 
correctly to a test set.  The variance of a network is characterised as a measure of 
the extent to which the output of a network is sensitive to the data on which it 
was trained.  There is a trade-off between bias and variance in terms of training 
neural networks; the best generalization requires a compromise between the 
conflicting requirements of small variance and small bias.  It is a trade-off 
because attempts to decrease the bias are likely to result in higher variance, whilst 
efforts to decrease the variance usually result in increased bias.  
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This leads to a discussion about two types of training procedures i) 
overtraining and ii) cross-validation approach.  In overtraining the network is 
trained until the desired limit for the error or the number of training epochs is 
reached.  The neural networks trained by this method when tested gives a smaller 
bias but a larger variance on the test set.  In the cross-validation approach the 
training dataset is partitioned into two disjoint subsets, estimation subset and the 
validation subset.  The estimation subset is used for training.  The training session 
is stopped periodically and the network is tested on the validation subset and the 
validation error is measured.  The network is allowed to train as long as the mean 
square error on the validation subset is decreasing.  The training is stopped when 
the validation error starts to increase.  Thus the testing results can be used to 
improve the training.  After learning stops the weights are frozen and the network 
performance can be validated using new data.  The purpose of the validation 
process is to determine if the network is capable of solving the problem it is 
trained for.  This method is known as the early stopping method of training.  
Figure 2.4 shows the error variation with the two types of training methodologies.  
The same method has also been suggested by Poulton (2001) in order to know 
when to stop the training.   

 
In this study we use the overtraining approach for predicting porosity and 

water saturation, cross validation approach for predicting permeability and a soft 
overtraining approach for lithofacies identification. These choices are based on 
tests using synthetic and real data for the problems at hand. 

Figure 2.5:  Error history during training and testing of a MLFF.  
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2.6 Advantages and disadvantages of a MLP 
network 
 
 

An MLP network generates nonlinear relationship between inputs and 
outputs by the interconnection of nonlinear neurons.  The nonlinearity is 
distributed throughout the network.  It does not require any assumption about the 
underlying data distribution for designing the networks, hence the data statistics 
do not need to be estimated.  Its parallel structure makes it realizable in parallel 
computers.  The network exhibits a great degree of robustness or fault tolerance 
because of built-in redundancy.  Damage to a few nodes or links thus need not 
impair overall performance significantly.  It can form any unbounded decision 
region in the space spanned by the inputs.  Such regions include convex polygons 
and unbounded convex regions.  The network has a strong capability for function 
approximation.  The abilities to learn and generalize are additional qualities. 
Previous knowledge of the relationship between input and output is not necessary 
unlike for statistical methods.  The MLP has a built-in capability to adapt its 
synaptic weights to changes in the surrounding environment by adjusting the 
weights to minimise the error. 

 
For an MLP network the topology is important for the solution of a given 

problem, i.e. the number of hidden neurons and the size of the training dataset.  
Because of the distributed nonlinearity and the high connectivity of the network a  
theoretical analysis of the network response is difficult to undertake.  The use of 
hidden neurons makes the learning process harder to visualise.  We identify the 
optimal architecture of the network by using synthetic data and the theory of VC 
dimension.  Large-scale MLP networks have extremely low training rates when 
the back-propagation algorithm is used, since the networks are highly nonlinear 
in the weights and thresholds.  We use Levenberg-Marquardt algorithm to 
overcome this problem.  The mean square error surface of a multiple network can 
have many local minima and a global minimum and the network may get stuck in 
the local minima instead of converging into the global minimum.  As a result the 
output of a single network may not be satisfactory. In order to avoid this problem 
we have in this study used multiple networks instead of a single network so that if 
one of the networks gives larger error it can be eliminated or the contribution of 
this network can be reduced in the ensemble output.  This is called the test and 
select approach (Sharkey et al. 2000). 

 
 
2.7 Multiple networks system 
 

A multiple network system is a combination of several networks.  There 
are several problems, which cannot be solved by a single network or can be more 
efficiently solved by multiple networks.  Better performance can be achieved by 
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combining redundant networks instead of a single network.  There are two 
common methods of creating a multiple network system, i) ensemble 
combination and ii) modular combination.  In an ensemble the component 
networks are redundant in that they each provide a solution to the same task or 
task component even though this solution might be obtained by different means.  
By contrast, under a modular approach the task or problem is decomposed into a 
number of subtasks, and the complete task solution requires the contribution of 
all of the several modules.  Both the ensemble and the modular combinations can 
exist at either a task or a sub-task level.  The ensemble and the modular 
combinations are not mutually exclusive and an actual multiple network system 
could consist of a mixture of ensemble and modular combinations at different 
levels.  The architecture of the networks for predicting porosity and water 
saturation are ensemble combination while the architecture of the networks for 
predicting permeability and lithofacies are modular and ensemble combination.  
Haykin (1999) denotes a multiple network system a committee machine (CM).  

 

2.7.1 Ensemble combination 
 

The main motivation for combining networks in redundant ensembles is 
that of improving their generalisation ability or to guard against the failure of 
individual component networks.  The reason for expecting individual networks to 
sometimes fail or make errors on some inputs is based on the assumption that 
they have been trained on a limited set of training data, and on the basis of that 
training data the network is required to estimate the target function.  Such 
estimates will inevitably not be identical to the target function unless the training 
data set is infinitely large.  The mean square error of a predictor is expressed in 
terms of the bias and the variance as given in equation (2.23).  

 
While generating the ensemble combination the expectation is that the 

differently trained experts converge to different local minima on the error surface, 
and the overall performance is improved by combining the outputs in some way.  
As demonstrated by the error analysis of Naftaly et al.(1997): 

 
i) The bias of the ensemble averaged-function FI(x) pertaining to the 

committee machine is exactly  the same as that of the function F(x) 
pertaining to a single neural network. 

 
ii) The variance of the ensemble-average function FI(x)  is less than that of 

the function F(x).  These theoretical findings point to a training strategy 
for reducing the overall error produced by the multiple network system 
due to varying initial conditions (i.e. random initial weights) 

 
iii) The individual expert should be purposely over-trained to reduce the bias 

at the cost of the variance. 
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There is clearly no advantage to be gained from an ensemble that is 
composed of a set of identical networks, which generalise in the same way.  The 
emphasis here is on the similarity or otherwise of the pattern of generalisation.  In 
principle, a set of networks could vary in terms of their weights, the time they 
took to converge and even their architecture and yet constitute essentially the 
same solution, since they result in the same pattern of errors when tested on a test 
set.  The aim then is to find networks, which generalise differently.  There are a 
number of training parameters, which can be manipulated with this goal in mind. 
These include the following: the initial weights, the training data, the topology of 
the networks and the training algorithm while keeping the other parameters 
constant.  In this study we generated the ensemble for predicting porosity and 
water saturation by randomly varying the initial weights from which each 
network is trained while holding the training data constant. Varying the training 
data is another popular approach to generate networks for ensemble combination. 

 
The training data can be varied by boosting as described by Schapire 

(1990) showing that a series of weak learners can be converted to one strong 
learner as a result of training the members of an ensemble on patterns that have 
been filtered by previously trained members of the ensemble.  The problem with 
this method is that it requires large amounts of data. Freund and Schapire (1996) 
proposed the AdaBoost algorithm that largely eliminates this problem.  The basis 
of this algorithm is that the training sets are adaptively resampled such that the 
weights in the resampling are increased for those cases, which are often 
misclassified.   

 
Another method of varying the training data is by bootstrapping (Breiman, 

1996).  Multiple versions of training dataset can be created by picking n samples 
at a time from a training dataset of N samples by replacement.  This procedure 
can be repeated several times to create a number of different, overlapping, data 
sets.  If there is a scarcity of training patterns, as normally in case of real data, 
then virtual samples can be generated as suggested in Cho et al. (1997).  A 
similar method is to use disjoint or mutually exclusive training sets; i.e. sampling 
without replacement (Sharkey et al., 1996).  There is then no overlap between the 
data, which is used to train different networks and diversity is thus guaranteed.  
This method has been used in lithofacies prediction in the present study in 
generating different networks for a committee of one lithofacies.  However, the 
committees for the different lithofacies have training datasets, which are 
overlapping. 
 

Once a set of networks has been created, an effective way of combining 
the several outputs must be found.  There are several different methods of 
combining the networks depending on the task performed by the networks i.e. if 
it is performing function approximation or pattern recognition.  A single output 
can be created from a set of network outputs via ensemble averaging (Naftaly et 
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al.,1997) or by means of a weighted average that takes account of the relative 
accuracies of the networks to be combined (Hashem, 1997).   

As suggested by Hashem (1997) the networks could be combined by 
providing weights to each network.  Two approaches were suggested i) 
unconstrained and ii) constrained.  In the unconstrained approach by assigning 
different weights to the output of the individual network the combined output 
from the K experts may be expressed by the weighted sum  

 

1
( , ) ( )

K

k k
k

y yα
=

= ∑x α x      (2.24) 

 
where ( )ky x  is output from the individual network, , 1,k k Kα =  are the weights 
and { ; 1.. }ix i N= =x is the input vector.  The requirement is to evaluate kα  so 

that y  provides a least-squares estimate of the desired response ( )d x .  Given a 
set of training data the approximation error is  
 

( ; ) ( ) ( ; )d yδ = −x α x x α .    (2.25) 
 
In order to correct for any bias Hashem et al. (1994) extended the definition of 

( ; )y x α  to include a constant term 0α .  Thus, the modified ( ; )y x α  is expressed 
by 
 

0
( , ) ( ) ( )

K
T

k k
k

y yα
=

= =∑x α x α y x   (2.26) 

 
where Tα  and ( )y x  are ( 1) 1K + ×  vectors and yo(x)=1.  As demonstrated by 
Hashem (1997) the unconstrained mean-squared error (MSE) optimal linear 
combination (OLC) of weights as given by (2.26) is equivalent to regression of 

( )d x  against ( ); 1,ky k K=x  with an intercept term 0α , i.e.  
 

0
1

( ) ( )
K

k k
k

r yα α ε
=

= + +∑x x    (2.27) 

  
where ε  is a random error with zero mean. 
 

In the constrained approach there is an additional constraint, that is  
 

0
1

K

k
k

α
=

=∑ .     (2.28) 
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The weights can be calculated from the training dataset, or partially on the 
training and test dataset.  This method is called the optimal linear combination 
(OLC) method  which provides an extra fit by means of different weights for 
each network. 
 

Another approach could be combining the networks nonlinearly in which a 
nonlinear network learns how to combine the networks with weights that vary 
over the input space (Wolpert, 1992).  While doing the pattern recognition, the 
networks can be combined by averaging.  In the present study while predicting 
porosity and water saturation we have combined the redundant networks by the 
OLC method.   Each individual network was trained on different initial weights. 

 

2.7.2 Modular neural network 
 

 
Modular decomposition can be undertaken for the purpose of improving 

performance.  A task could be solved with a single monolithic network but better 
performance is achieved when it is broken down into a number of specialist 
modules. The divide and conquer approach (Jordan and Jacobs, 1994) that is 
exemplified by the mixture of experts approach (Haykin, 1999) provides an 
example of the improved performance that can result from a modular system.  In 
addition to performance improvement it could be necessary to decompose the 
task into subtasks.  Thus the divide and conquer principle can be used to extend 
the capabilities of a single network.  If a single network replaces the combination 
of experts, this network would have a correspondingly large number of adjustable 
parameters and hence the risk of overfitting the training dataset increases.  The 
training time for such a large network is likely to be longer than for all the 
experts trained in parallel.  Each subproblem could then be solved with a 
different neural net architecture or algorithm making it possible to exploit 
specialist capabilities.  Each component in a modular system can take the form of 
a neural network or a non-neural computing technique.  The pre-processing of 
neural network inputs before training is also viewed as a form of modular 
decomposition for the purpose of simplifying the problem.  A modular approach 
can also be recombining rather than decomposing as is the case when the input 
information comes from a number of independent sources or sensors and the 
potential for modularity is inherent in the task itself.  Another reason for adopting 
a modular approach is that of reducing model complexity, and making the overall 
system easier to understand, modify and extend.  Training times can be reduced 
as a result of modular decomposition and prior knowledge can be incorporated in 
terms of suggesting an appropriate decomposition of a task.  

 
The most important factor of a modular system is the way modular 

components have been created.  A task may be decomposed into modules or 
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alternatively the input to the system might come from a number of independent 
sources and the task is to combine them to form an overall solution.  The 
decomposition of a problem into modular components may be accomplished 
automatically, explicitly or by means of class decomposition.  Class 
decomposition involves breaking a problem into subproblems based on the class 
relationships.  The method as proposed by Anand et al. (1995) involves dividing 
a k-class classification problem into a k two-class classification problems, whilst 
using the same number of training data for each two class classification as the 
original k-class problem.  We also used the same principle in lithofacies 
prediction i.e. dividing a multiclass classification problem into a two class 
classification problem by maintaining an overlapping training dataset for 
different lithofacies.  Each modular component is a neural network trained for a 
single lithofacies.  

 
An alternative approach is one in which the automatic decomposition of 

the task is undertaken, characterized by a blind application of a data partitioning 
technique.  Automatic decomposition is more likely to be carried out with a view 
to improving performance whilst explicit decomposition might either have the 
aim of improving performance or that of accomplishing a task which either could 
not be accomplished using a single network or could not be accomplished either 
as easily or as naturally.  Under the divide and conquer approach complex 
problems are automatically decomposed into a set of simpler problems.  Mixture 
of experts and hierarchical mixtures of experts partition the data into regions and 
fit the simple surfaces to the data that fall in each region.  Expert networks learn 
to specialize on subtasks and to cooperate by means of a gating network.  The 
regions have soft boundaries which means that data points may lie 
simultaneously in multiple regions. The mixture of experts model consists of a 
number of expert networks combined by means of a gating network, which 
identifies the expert or blend of experts most likely to approximate the desired 
response.   

  
There are four different modes of combining component networks as 

viewed by Sharkey (1999); cooperative, competitive, sequential and supervisory.  
The main difference between cooperative combination and competitive 
combination is that in cooperative combination it is assumed that all of the 
elements to be combined will make some contribution to the decision even 
though this contribution may be weighted in some way; whereas in competitive 
combination it is assumed that for each input the most appropriate element (task, 
component or sensor) will be selected. In sequential combination the processing 
is successive; the computation of one module depending on the output of 
preceding module.  In a supervisory relationship one module, is used to supervise 
the performance of another module. Ensembles are always involved in 
cooperative combination.  
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2.8 Multiple linear regression 
 
 Like neural networks, regression analysis also deals with the formulation 
of mathematical models that depict relationships among variables and the use of 
these modelled relationships for the purpose of prediction and other statistical 
inferences.  In many cases the relationship between the variables is not 
deterministic but the variables are mutually related or one variable is dependent 
on a number of influencing or causal variables where the relation is not governed 
by a precise physical law.  A plot of some observed values of the variables  
 
depicts a relation among them.  After gaining sufficient knowledge about an 
empirical relation it may be possible for the investigator to formulate a theory 
that leads to a mathematical formula and hence to the semi-deterministic case.   
 
 Suppose that the response variable y in an experiment is expected to be 
influenced by the three causal variables 1 2 3, andx x x  of vector x and that the 
data relevant to all these variables are recorded with the measurements of y.  By 
analogy  to linear regression model we can write 
 

0 1 1 2 2 3 3 , 1,...,i i i iy x x x e i nη η η η= + + + + =  (2.29) 
 
where 1 2, ,........,i i inx x x  are the fixed values of the three independent variables in 
the ith experimental trial and yi  is the corresponding response.  The error 
components ei are assumed to be independent normal variables with mean of zero 
and variance of 2σ .  The parameters 0 1 2 3, , andη η η η  are unknown fixed 
quantities and are called the regression parameters.  The model suggests that the 
response varies linearly with each of the independent variables when the other 
two remains fixed.  The regression parameters are estimated by the principle of 
least squares by minimising the sum of squared deviations given by 

 

( )2
0 1 1 2 2 3 3

1

n

i i i i
i

y x x xη η η η
=

− − − −∑   (2.30) 

 
The obtained least squares which are the estimates of 0 1 2 3, , andη η η η    denoted 
by  0 1 2 3ˆ ˆ ˆ ˆ, , andη η η η     and can be verified to be the solutions to the following 
normal equations: 
 
   

1 1 2 1 3 1

2
1 2 3ˆ ˆ ˆx x x x x x yS S S Sη η η+ + =    (2.31) 

 
   

1 2 2 2 3 2

2
1 2 3ˆ ˆ ˆx x x x x x yS S S Sη η η+ + =    (2.32) 
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1 3 2 3 3 3

2
1 2 3ˆ ˆ ˆx x x x x x yS S S Sη η η+ + =                      (2.33) 

     
   0 1 1 2 2 3 3ˆ ˆ ˆ ˆy x x xη η η η= − − −              (2.34) 
 
where  

1 1 2

2 ,x x xS S , etc. are the sums of squares and cross products of the variables 
in the suffix and can be given by 
 

 
( )

1

22 2 2
1 1 1 1x i iS x x x nx= − = −∑ ∑                         (2.35)    

 
( )( )

1 2 1 1 2 2 1 2 1 2x x i i i iS x x x x x x nx x= − − = −∑ ∑                         (2.36)                                 
and 1x , 2x , 3x   are the mean values of the variables 1x , 2x , 3x  and are given by 
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= ∑                                                         (2.39)                                

Thus the least squares regression hyperplane is given by 
 

0 1 1 2 2 3 3ˆ ˆ ˆ ˆ ˆ , 1,...,i i iy x x x i nη η η η= + + + =              (2.40) 

 

2.8.1 Analogy of MLR with neural network 
 
 

The method of identifying the relationship between the response variable y 
and the causal variables 1 2 3, andx x x  using MLR is analogous to the procedure of 
identifying relationship between the input and the output variables using neural 
networks. The parameters 1 2 3, andη η η    are similar to the weights of the 
network. The parameter 0η is same as the bias. The regression parameters are 
estimated by the principle of least squares by minimising the sum of squared 
deviations similarly the weights and the bias in the neural network are adjusted 
by minimising the cost function.  
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The difference between the neural networks and MLR is that the input-
output relationship is linear in MLR where as the relationship is nonlinear in 
neural network. The neural network method unlike the MLR method does not 
force predicted values to lie near the mean values and thus preserves the natural 
variability in the data. 
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Chapter 3  
Porosity prediction 
 
3.1 Introduction 
 

For predicting porosity from well logs we have tested different methods, 
using a single neural network (Helle et al., 2001) and the committee machine 
(CM) approach (Bhatt and Helle, 2001a).  In the study with single neural network 
the basic network is a 3-layer MLP network as shown in Figure 2.4.  The input 
layer has 3 neurons corresponding to density, sonic and resistivity logs.  We did 
not use the neutron porosity log because there is quite often problem with tool 
calibration of neutron log as it is not quantitatively consistent between different 
service companies. The hidden layer has 7 neurons and the output layer has 1 
neuron. 

 
In the committee machine approach we trained 20 networks on the same 

training dataset with random initial conditions of weights and bias with the goal 
that different networks will converge differently on the error surface.  Out of 
those 20 networks we selected 9 networks, which gave minimum bias and 
variance on the validation set.  The networks outputs are combined by ensemble 
averaging (Naftaly et al., 1997) and OLC method (Hashem, 1997).  The main aim 
of using CM is to obtain a better porosity prediction by a combination of 
networks instead of finding a single network by a trial and error approach.  
Before applying a new method to real data the common practice is to use 
synthetic data as it gives us the flexibility to design the best architecture of the 
neural network by varying the number of patterns or hidden neurons or the noise 
level.   
 
 

3.2 Synthetic data 
 
 

The synthetic data for predicting porosity from well logs is defined as 
follows: The fluid saturation profiles for each fluid type; i.e. water, oil and gas, 
can be defined in terms of partial fluid saturation of the components which 
satisfies the following equation 

 
1w o gS S S+ + =     (3.1) 



32                                                                                         Chapter3. Porosity prediction  

 The density fρ  of the composite pore fluid is given by 
  

f w w o o g gS S Sρ ρ ρ ρ= + +    (3.2) 
 

where  31.03, 0.75 and 0.25 g/cmw o gρ ρ ρ= = = . 
A bulk density profile is then given by a linear trend superimposed by a sine-
function to cover a realistic range of values (as shown in Figure 3.1).  Similar 
profiles are given for the density mρ  and transit time mt∆ , of the matrix grain 
material and the porosity can then be computed from the density equation 
 

( )
( )

m

m f

ρ ρφ
ρ ρ

−
=

−
     (3.3) 

 
Given the porosity profile and grain properties we compute the sonic log t∆  
from Wyllie’s equation  
 

( )
( )

m

m f

t t
t t

φ ∆ − ∆
=

∆ − ∆
    (3.4) 

 
where the average transit time for the composite pore fluid is given  by 
 

f w w o o g gt t S t S t S∆ = ∆ + ∆ + ∆    (3.5) 
 

where 189, 238 and 625 µs/ftw o gt t t∆ = ∆ = ∆ = . 
Assuming clean sandstone the resistivity log tR  can now be computed from 
Archie’s equation  
 

w
t n

w

FRR
S

=          (3.6) 

 
where the resistivity of water 0.14 ohmmwR = , the formation factor  F  is given 

by m
aF

φ
= , a = 0.625, and the exponents m = n =2 using typical values for a 

North Sea reservoir. 
 

With the selected porosity model we preserve a fairly linear relationship 
with bulk density (3.3) and transit time (3.4), except for the small non-linear 
perturbations introduced by the independent variations in fluid density fρ , the 
matrix density mρ  and transit time mt∆ of the rock material.  Further non-
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linearity between porosity and the logs is introduced through Archie’s equation 
(3.6). The input model is shown in Figure 3.1 and some final logs are shown in 
Figure 3.2.  Four different data sets of total 3000 samples were created with 
independent random noise of 0, 2.5, 5 and 10 percent added to each log.   Subsets 
were then selected at regular depth intervals for the training patterns (50-150 
samples). 
 

 

Figure 3.1: Model inputs for the synthetic porosity logs. 
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Figure 3.2: Model synthetic logs for porosity network:a) noise free 
b) with 10% noise 

 

3.3 Optimal design of networks 
 

 
There are two questions in neural network design that have no precise 

answer because they are application-dependent: 
  

i) How much data do we need to train the network?   
 
ii) What is the best number of hidden neurons to use?   
 
In general, the more facts and the fewer hidden neurons, the better. There is, 
however, a relationship between the number of facts and the number of hidden 
neurons.  Too few facts or too many hidden neurons can cause the network to 
memorise, implying that it performs well during training, but tests poorly and 
fails to generalise. 
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There are no rigorous rules to guide the choice of number of hidden layers 
and number of neurons in the hidden layers.  However, more layers are not better 
than few, and it is generally known that a network containing few hidden neurons 
generalises better than one with many neurons (Lawrence, 1994).   As discussed 
by Poulton (2001) the network performance can be considered a quadratic 
function of the number of hidden neurons so a decrease in number could result in 
increased performance.  With too few hidden neurons the network cannot make 
adequately complex decision boundaries and with too many it may memorise the 
dataset.  Many researchers have suggested the optimum number of hidden 
neurons could be the geometric mean of the input and the output neurons if the 
number of the output neurons is less than the input neurons.  For instance, if the 
relationship between input and output is known to be almost linear we may 
emulate the linear regression by choosing the number of independent 
connections; i.e. neuron weights, equal to the number of independent coefficients 
in the regression equation.  Then, a few neurons may be added to the hidden layer 
in order to account for non-linearity between input and output.  On the other 
hand, the optimal configuration can only be achieved by testing and by learning 
through experience with the data and problems at hand. 
  

Most neural networks studies reported in geoscience provide only single 
realisations of the predictions (e.g. Huang and Williamson, 1997; Helle et al., 
2001), and the best network among a number of individually trained networks is 
then selected by trial and error. The latter is a time consuming process does not 
always guarantee an optimal solution.  

 
Since the optimal network architecture is application-dependent we have 

to determine its configuration by numerical experiments with the problem and 
data at hand.  So for identifying the best architecture of the network we used 
synthetic data as discussed before. The topology of the neural network is same as 
shown in Figure 2.4 with three inputs as density, sonic and resistivity and one 
output neuron i.e. porosity.  The optimal number of hidden units remains to be 
determined and, as demonstrated in Figure 3.3, we may determine the appropriate 
size of the hidden layer by doing an error analysis on the outputs using different 
number of hidden neurons and different number of samples. For this test we use a 
small CM with only 5 experts and simple averaging for each point to establish 
more representative results than is possible with a single network. The experts are 
trained by using 150 facts, selected at regular intervals along the 3000 sample 
synthetic logs. The experts are purposely over-trained to reduce the bias. We 
calculate the error by making a difference between the output from each CM with 
the desired output on all the 3000 samples in the log. A statistical analysis of the 
error is done by calculating bias and variance. In Figure 3.3 and Figure 3.4 bias is 
the mean of the error and standard deviation (σ ) is the variance of the error. 
Thus the standard deviation has the main contribution towards error. 
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For noise free data both the standard deviation and the bias decay 
asymptotically to a constant level for a network with more than 10-12 hidden 
neurons as shown in Figure 3.3a.  A consistent feature for all noise levels is the 
sudden drop in error obtained by increasing the number of hidden units from 4 to 
6. Except for noise-free data the standard deviation increases for networks with 
more than 10 hidden units, while the trend for the bias seems less predictable.  In 
general, however, there is a tendency for the bias to decrease with an increasing 
number of hidden units, which is consistent with the findings of Parmanto et al. 
(1996) who has dealt with somewhat simpler problem and network configuration.  

 
Comparing the bias and variance gives insight into the role of noise in 

over-fitting.  For clean data over-fitting is not a problem and we can afford to 
have a network with higher degree of complexity.  More hidden neurons may not 
improve the performance, but it does not hurt.  The problem of over-fitting 
appears only when the data is noisy.  Even with a low noise level of 2.5% the 
complexity becomes a concern since the standard deviation starts increasing after 
10 hidden neurons where the standard deviation is at its minimum for all noise 
levels tested. The standard deviation surpasses the bias as the leading contributor 
to the total error as the network complexity grows. 

 
 From this experiment it is obvious that the porosity network should have 

more than 6 and less than 12 hidden units because for all the noise levels standard 
deviation starts increasing as the number of neurons increases from 10 to 12 
hidden neurons. Thus based on the results in Figure 3.3 we have chosen 10 
hidden neurons for the porosity network as a fair compromise, implying a total 
error of less than 0.001 in porosity with reasonably noisy data. 

 
A major assumption in network design is that a sufficient number of well-

represented training samples are available.  In many real situations, however, 
training samples are expensive to obtain.  Since the problem complexity dictates 
the size of the network, we may end up with fewer facts than required for a 
network of a given size.   For the present problem, the number of representative 
core samples is normally the main limitation. The challenge in network design 
has been the small number of available data, and we can overcome this problem 
by generating virtual samples as discussed in Cho et al. (1997) and in Wong et al. 
(2000) as a remedy for insufficient number of training samples.   

 
The benefit of using synthetic data, compared with the real-world data, is 

thus obvious since it allow us to vary the sampling of the training set as we wish. 
By varying the number of patterns from 75 to 200, sampled at regular intervals 
from the complete synthetic logs, for each noise level, we have obtained the 
results shown in Figure 3.4. Again, the standard deviation and bias (in porosity 
fractions) are measured relative to the complete set of 3000 porosity samples. As 
with the number of hidden neurons, also in case of training patterns we find a 
distinct drop in error above a certain threshold value dependent on noise level. 
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For noise-free and low-noise (2.5 %) data virtually no improvement can be 
detected with more than 100 training patterns.   For the more noisy data, with 5% 
and 10 % noise, we apparently still gain accuracy when using more than 150 
samples. On the other hand, with 150 training patterns the porosity data is 
reproduced within a practical error limit of 0.001 in porosity.  In general, the 
latter result is also in agreement with Parmanto et al. (1996). 

 
Figure 3.3: Variation of a) bias and b) std. deviation with number of 
neurons 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Variation of a) bias and b) std. deviation with number of 
training facts 
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3.4 Training strategy 
 
 

We compare the performance of the individual trained networks by a 
cross-validation approach and by over training. In the cross-validation approach 
the networks were trained on 80% of the data and simultaneously tested on the 
remaining 20% of the data, in order to avoid over fitting of the data. The training 
was stopped as soon as the variance on the validation set started to increase, so 
that the network produced a minimum of bias and variance on the test set (Figure 
2.5).  If the network is allowed to continue the training beyond this stage it 
memorises the data from the training set and gives a poor generalisation on the 
test set. Figure 3.5 shows that the networks trained with the cross-validation 
approach give smaller error than those trained with the over training approach. 
However after taking the ensemble average and the OLC the two approaches do 
not differ significantly because variance is reduced by ensemble averaging and 
bias is reduced by OLC. In the cross-validation approach the network learns the 
predictor function by using only 80% of the dataset which may be sometimes 
insufficient for function approximation. So for a single network the best solution 
is to perform training by the cross-validation approach, while for a committee 
machine over training can also be the solution.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5a): Comparison of the bias and variance of the networks on the 
test dataset trained with cross-validation 
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Figure 3.5b): Comparison of the bias and variance of the networks on the test 
dataset trained with overtraining approach 

 
3.5 Comparison of alternative techniques 
 

 
The resulting committee network for porosity, consisting of nine experts, 

has been applied to the synthetic data. We compare here the porosity predicted by 
the OLC approach and the MLR on noise free data, 2.5%, 5% and 10% noisy 
data on test set. It is quite obvious from Figure 3.6 and Figure 3.7a that the MLR 
fails to reproduce the model data due to the small non-linearity in the porosity 
relationship whereas the neural network approach, on the other hand, is capable 
of handling non-linearity with any desired accuracy. In contrast to MLR models 
the neural network approach does not force the predicted values to lie near the 
mean values and thus preserves the actual variability in the data (Rogers et al., 
1995) as shown in Figure 3.7b.  Even for noisy data the errors of the individual 
experts are far below any practical level, the ensemble average has significantly 
reduced the bias and variance also and the OLC further eliminated the bias and 
reduced the variance as shown in Figure 3.7a. We also obtained similar results for 
2.5% and 5% noise level also. 
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Figure 3.6: Comparison of OLC approach and MLR on noise free 
data, a) predicted porosity b) error in porosity prediction 
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Figure 3.7: Comparison of OLC approach and MLR on data with 10% 
noise, a)variation of bias and variance, b) predicted porosity 
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3.6 Real data 
 
 

In our first study (Helle et al., 2001) we used a single neural network for 
predicting porosity from well logs. The network was trained by the Levenberg- 
Marquardt back-propagation algorithm. The training facts were dominated by 
non-reservoir intervals from Tertiary to Jurassic levels. The majority of the 
porosity values were based on grain density laboratory measurements and bulk 
density from wireline data (Lucas, 1998). These grain density values have been 
used as matrix density for calculating porosity from the density porosity 
transform. The samples of grain density were carefully selected to obtain a range 
of values appropriate for most sediments in the Viking Graben  (Bhatt, 1998) for 
use in a basin-scale fluid flow analysis. The main advantage of using porosity 
derived from the density measurements is the fact that these are the best possible 
estimates of in situ porosity values since the compressibility of the pure grain 
material is likely to be small compared with that of the matrix.  The grain density 
in the laboratory is thus not very different from in situ values, and hence the 
porosity estimates are less prone to pressure corrections than those based on core 
plugs. The network consisted of 3 neurons in the input layer, 7 neurons in the 
hidden layer and 1 neuron in the output layer. This network has been tested on 
different wells in various fields. It revealed excellent over-all characteristics 
when applied to the entire geological section as well as in the fine details of a 
water-bearing reservoir. Figure 3.8a displays the results of this network in the 
reservoir section of well 31/4-3. The comparison made between predictions and 
core helium porosity reveals striking similarities indicating, after all, that core 
and well data may be fairly consistent. 

 
Porosity measured in the laboratory is normally not corrected for 

overburden pressure as a result of which the porosity measured in the laboratory 
may be higher than porosity in insitu conditions. It is only sometimes that special 
core analysis (SCAL) is performed in which the core is first compacted to 
reservoir pressure level and then further analysis for porosity, permeability etc. is 
done. Figure 3.8b shows the result of special core analysis studies performed in 
well 30/6-9 where the variation of porosity was studied as a function of pressure 
when a core was brought from the in situ to the laboratory conditions.  The effect 
is different for different samples. Thus it is difficult to standardise a particular 
formula for pressure correction of porosity.  The effective correction could vary 
from 5 to 12 porosity units in extreme cases e.g. as shown in Figure 3.8b.  

  
For calculating porosity from grain density the pore fluid was assumed to 

be brine of density 1.03 g/cm3 since no samples were taken from hydrocarbon 
bearing sections.   In order to adjust the initial network to account for the various 
pore fluids we added a few data points taken from the hydrocarbon reservoirs. 
The training patterns cover the porosity range 0.02 – 0.55 from different fields.  
Out of a total of 81 facts only 14 facts are taken from the main test area which is 
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the Oseberg-field.  The capability of the resulting modified network to account 
for different pore fluids can be appreciated in Figure 3.9. We compare the 
porosity predicted by the neural network with the one predicted by the density-
porosity transform equation (3.3) using a constant grain density ρg=2.64 g/cm3 
and with alternative fluid densities ρf  = 0.25, 0.75 and 1.03 g/cm3 for gas, oil and 
brine respectively, in three wells with water saturated, oil saturated and brine 
saturated formations.  The corresponding porosity transforms of φρ reveal strong 
sensitivity to the pore fluid density, with differences of 0.05 to 0.1 units between 
the results of assuming brine versus gas filled rock.  There is a strong response to 
pore fluid in the transform as shown in Figure 3.10. Thus after knowing the pore 
fluid density the porosity can be calculated by using the density-porosity 
transform.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8: a) Comparison of core porosity and porosity predicted by neural 
network in well 31/4-3  b) pressure variation on porosity (SCAL 30/6-9) 
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An additional correction term for clay content (Sclumberger, 1989), and a 
variable ρg, are normally included to improve the accuracy of the transform 
implying the need for additional core data and input from log interpretation to 
obtain shaliness from the gamma ray log.  The porosity predicted by the neural 
network in all the three wells reveals quite a good match with the core porosity. 
The porosity predicted by neural network follows the porosity calculated by 
density transform but the advantage of the neural network approach is that no 
information about pore fluid and no correction for shaliness is essential, only log 
data is required, once the network has been properly tuned to the area. 
 

In Figure 3.9a the neural network porosity and porosity from the density 
transform are better correlated than with core porosity. The reason is because of 
the different conditions of measurements for core and log. There is an 
underprediction of porosity by neural network by 0.5-2 porosity units as this is a 
test well and so the training dataset may not be fully representative of the well 
data. Whereas in case of porosity from the density transform we can tune the 
fluid density which fits the core porosity.  

 
In Figure 3.9b the neural network porosity is predicting about 2 porosity 

units higher than the porosity from the density transform and the core porosity. 
The reason is that this is also a test well in comparison to the density and sonic 
values in training dataset this well is having a low density value of about 0.75-1 
gm/cc and a high sonic travel time of about 5-7 sec/ ftµ . Due to this there is an 
overprediction of porosity in this well. This can be remedied by building more 
regional networks so that the wells in that area are fully represented in the 
training dataset. 

 
In Figure 3.9c there is a small scale variation in core data due to thin layers 

at the bottom of Oseberg. These layers have been also observed in many other 
wells of the Oseberg field. The layers are beyond the resolution of standard log 
data. As a result of this the porosity predicted by logs both by the density 
transform and neural network are uniform in comparison to high variations in 
core porosity. There is a similarity in the trends of the three porosities that below 
a depth of 4090m are all increasing slightly but due to the thin layers the core 
porosity has higher variations. The deviation between neural network porosity 
and the density porosity transform is due to the difference in density and sonic 
log response below the depth of 4118m as density started increasing leading to 
low porosity from the density transform whereas sonic has also a rising trend due 
to which neural network porosity is increasing. Also at the shale-sand transition 
at the top of the reservoir interval there is a peak in the neural network porosity, 
which is not present in the core, or the density porosity. While the density is 
virtually constant the sonic reveals two distinct peaks at the top and bottom of the 
reservoir. The peak in the neural network porosity comes due to the peak in sonic 
travel time.  This feature has been observed in several of the wells in the Oseberg 
field and is thus considered to be a real low-velocity event. Thus, here the neural 
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network prediction based on input from three logs compares less favourably with 
the helium core porosity than that from density alone.  

 
In Figure 3.11 we show cross plots for wells 30/9-1, 30/9-B-40 and 30/9-

B-2 for a comparison between the performance of neural network porosity and 
density porosity with core porosity. The cross plots reveal that the two 
predictions are very similar. 
 

For the quantification of the error we calculate the difference between the 
output from the neural network and core porosity. We generate a histogram to see 
the error distribution, on the error histogram we apply a Gaussian fit and 
calculate the mean and standard deviation of the probability distribution function. 
A Gaussian fit to the error distribution for the three wells gives a mean error of 
0.01 in porosity and a standard deviation of 0.015, which is sufficiently low for 
all practical purposes. 

 
Being motivated by the benefits of CM architecture, with the introduction 

of ensemble averaging and OLC approach which further improves the results, we 
performed the second study (Bhatt and Helle et al., 2001a) by using CM for 
predicting porosity. The argument is that while one network reproduces the main 
patterns, the others may provide the details lost by the first.  If all the errors of 
committee members are perfectly correlated, then using a committee does not 
improve performance. However if the error patterns are uncorrelated, 
performance of the committee dramatically increases and asymptotically 
approaches perfect performance. Therefore it is beneficial to make the errors 
among the networks in the committee less correlated in order to improve the 
committee performance. The common method for constructing a committee is to 
train an ensemble of networks independently, using the same learning dataset. 
The networks in the committee have been reported as achieving significant 
improvement over individual network performance in regression and 
classification tasks (Hashem, 1997; Parmanto, et al., 1996).  
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Figure 3.9: Comparison of neural network porosity and density-
porosity transform with core porosity for well; a)30/9-1, b)30/9-B-
40, c)30/9-B-2 
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Figure 3.10: Testing the sensitivity of density- porosity transform 
for different pore fluids in well; a)30/9-1, b)30/9-B-40, c)30/9-B-2 
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Figure 3.11: Crossplott of core against NN porosity and core against 
porosity from density transform in well: a)30/9-1, b)30/9-B-40, c)30/9-B-2 
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Figure 3.12: Block diagram of a CM for porosity prediction 
 
 
The architecture of a committee is shown in Figure 3.12  Here each expert 

is a single neural network having 3 neurons in the input layer, 10 neurons in the 
hidden layer and 1 neuron in the output layer as used with the synthetic data. We 
train 20 such networks with the same input data but with different initial weights.  
The networks are overtrained to reduce the bias at the cost of variance.  Out of 
these 20 networks 9 networks with minimum bias were selected.  As suggested in 
Sharkey et al. (2000) the performance of neural networks can be improved by 
combining several redundant networks. The ensemble creation can be done by 
‘test and select’ approach, which involves testing the performance of individual 
networks on a test set and then selecting the best out of them. The output from 
them is combined using the ensemble average (Naftaly et.al., 1997) or the 
unconstrained OLC approach (Hashem, 1997). The ensemble average gives an 
average of the bias and variance of all the networks whereas the OLC approach 
gives an additional fit to the data by removing the bias and reducing the variance 
showing that it is the best technique for porosity prediction.  

 
Based on the results from synthetic data as shown in Figure 3.3 and Figure 

3.4 as discussed in section 3.2 the optimum number of hidden neurons that give 
minimum bias and variance should be between 6-12 and the number of training 
patterns should be more than 150.  Therefore we chose the optimum number of 
hidden neurons as 10 for training each expert of the committee. More training 
data from different wells of the Oseberg field have been added to the training 
dataset of the previous study, which had 81 training patterns. The total number of 
training patterns is now 168 for training each expert of the committee.  
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The variance distribution for the experts of the committee is surprisingly 
constant as shown in Figure 3.13a, and confined to a level that reflects the 
practical limits in accuracy for matching core data and wireline logs, equivalent 
to a standard deviation of about 0.02 in porosity.  Ensemble averaging and OLC 
imply only a minor reduction in the variance while the bias is effectively 
removed by OLC in accordance with the theory.  The neural network predicted 
porosity correlates very well with core porosity for the training dataset as shown 
in Figure 3.13b. 

 
The technique has been tested on several wells of Oseberg field and found 

to be successful.  Figure 3.14 shows the results on the gas and oil bearing well 
30/9-B-20 with a gas oil contact at 3198m.  The well is inclined with a hole 
deviation of 40 degrees.  The porosity has been predicted by neural network and 
compared with the core porosity in the Brent formation. The core data consisted 
of 380 core points. In general the correlation between the neural networks 
predicted porosity and core porosity is good as shown in Figure 3.14b.  There is 
an insignificant bias and a standard deviation that essentially reflects the scatter 
in the underlying measurements.   The Gaussian fit to the difference between core 
and neural network predicted porosity gives a negligible mean and standard 
deviation of 0.04, as shown in Figure 3.14c  which is mainly due to the scatter in 
the core porosity and neural network porosity. The scatter is mainly in the Ness 
formation (3140-60m) because it consists of thin beds of sand, shale and coal, 
which are beyond the resolution of log data. Below this interval is the Oseberg 
formation, which is a homogeneous sand body, and therefore the match between 
the two porosities is very good.  Above the Ness formation i.e. in the interval 
from 3110 to 3135m is the Tarbert formation, which is fairly homogeneous 
within each lithology of sand and shale sequences.  In general there is a good 
match between the two porosities. Figure 3.15 shows the comparison of porosity 
predicted by neural network and core porosity in an oil-bearing well, 30/9-B-24.  
This well is also inclined with a hole deviation of 35 degrees. The porosity has 
been predicted by neural network and compared with core porosity in the Brent 
formation.  The well has 161 core points. The porosity predicted by neural 
network matches very well with the core porosity as shown in Figure 3.15b. The 
Gaussian fit to the difference between core and neural network predicted porosity 
gives a negligible mean and standard deviation of 0.01 as shown in Figure 3.15c. 
The core data is available in the Etive (3380-90m), Rannoch (3390-3393m) and 
the Oseberg formation (3393-3448m).  The match between the two porosities is 
very good in the Etive, Rannoch and the upper part of the Oseberg formation 
(3393-3428m).  In the lower part of Oseberg formation (3428-3448m) there is 
very fine layering which has a spatial scale of less than 0.1m. These fine layers 
cannot be detected by the logging tools, which have a spatial resolution of about 
1m for resisitivity tool and 0.3m for density and sonic tools. Figure 3.16 shows a 
core photograph displaying the small-scale heterogeneities in the core, which are 
beyond the resolving power of logs.  The neural networks, which are trained on 
log data, thus give a low-resolution prediction in comparison with cores.  
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However an important observation is that porosity is correctly predicted in 

all fluid zones by the same network, without explicit knowledge of the pore 
filling fluid, implying that also the network for real data is sensitive to pore fluid 
type and saturation. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.13 : a) Comparison of bias and variance of networks with 
ensemble average and OLC b) correlation of neural network 
porosity with core helium porosity 
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Figure 3.14: a) Comparison of core porosity and neural network porosity by OLC 
in well 30/9-B-20 b) crossplott of core against NN porosity, c) error distribution 
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Figure 3.15: a) Comparison of core porosity and neural network porosity by OLC 
in well 30/9-B-24. b) crossplott of core against NN porosity, c) error distribution 
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Figure 3.16: Comparison of log and core derived porosity values with the core 
photos. 
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3.7 Conclusions  
 
 

The neural network approach to porosity conversion has a number of 
advantages over conventional methods, including empirical formulas based on 
linear regression models or the common semi-empirical formulas such as 
Wyllie’s and the density equation. The neural net method represents a pragmatic 
approach to the classical log conversion problem that during the years has caused 
problems for generations of geoscientists and petroleum engineers.   Instead of 
searching for complicated interrelationships among geological/geophysical 
properties the neural net approach requires no underlying mathematical model 
and no assumption of linearity among the variables. 

 
The main drawback of the method is the amount of effort required to 

select a representative collection of training facts, which is common for all 
models relying on real data, and the time to train and test the network.  On the 
other hand, once established the application of the network requires a minimum 
of computing time.  For the porosity network we find that porosity values 
calculated from grain density (used as matrix density) and in situ bulk density 
data give more consistent results than using standard helium core porosity data. 
The benefits over the single neural network of the committee neural network 
where the predictions are redundantly combined are obvious.  

 
It is essential to determine the design of the optimal architecture of the 

network using synthetic dataset. The optimum architecture in this case is 3 
neurons corresponding to density, sonic and resistivity logs in the input layer, 6-
10 neurons in the hidden layer and 1 neuron in the output layer. The number of 
training patterns should be about 150. More training data do not harm the 
accuracy, but increase the time for training the network. 

  
From 20 porosity networks trained by the same patterns, but from random 

initial conditions, we have included the nine best in the CM based on a least error 
criterion when compared with test data.  The unconstrained optimal linear 
combination of Hashem (1997), is the most suitable ensemble approach for the 
porosity CM and the accuracy is mainly limited by the accuracy of the training 
patterns and the accuracy of the log data themselves.  The benefit of neural 
networks compared with the MLR technique has been briefly touched upon by 
showing that MLR fails to reproduce the minor non-linearity imbedded in the 
common log-to-porosity transforms, whereas the neural network reproduces the 
same data with high accuracy.  In application to real data for one well the 
standard deviation error of the difference between prediction and helium core 
porosity data is 0.04, while for another well the standard deviation error is only  
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0.01.  These differences, however, reflect the limitations in the techniques of 
measurement rather than errors in the numerical technique of neural networks. 

 
Our porosity predictions are sufficiently accurate to satisfy most practical 

needs and are comparable with the accuracy obtained from the density equation.  
The network approach, on the other hand, requires no a priori knowledge of the 
grain material and pore fluid, and can thus equally well be applied while drilling 
without prior petrophysical evaluation. The network is sensitive to pore fluid type 
and saturation. 

 
In this study we have not considered the effect of different drilling fluids 

for example using oil based mud or water based mud.  It will be very important to 
see the behaviour of network with respect to different drilling fluid in future 
study.   
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Chapter 4 
Permeability prediction 
 
4.1 Introduction 
 

Permeability is a critical parameter for the evaluation of hydrocarbon 
reservoirs. It is primarily dependent on porosity, clay content and grain sorting. 
There are several models relating the permeability with the grain size. The 
Kozeny Carman model (Dullien, 1991) is one of the most commonly known. 
Based on this model permeability is expressed as: 

 

           
23B Dk

T
φ

=        (4.1)  

 
where φ is the porosity, T is the tortuosity,  B is a geometrical factor known as 
Kozeny constant and D  is effective grain size.  The value of B can vary from 5 
to 100 (Rose and Bruce, 1949). For an ideal, uniform and consolidated rock B=5. 
Due to the large variation in the value of B this model is not much used now.  
The most accurate method to date for measuring such an important property is 
core analysis. It is well known that closely spaced core permeability values are 
often not available because of unfavourable borehole conditions and high cost of 
coring. Well log data, however are abundant and are frequently used to infer 
permeability along the drilled wells. Although no well log is currently capable of 
measuring permeability directly, some of the methods for calculating 
permeability from well logs are as follows:  
 
i) Permeability estimates from porosity and irreducible water saturation:  
 

Based on Kozeny Carman equation Wyllie and Rose (1950) proposed an 
empirical relationship between permeability, log derived porosity and 
irreducible water saturation (Swi) given by 
 

x

y
wi

Ck
S

φ
=      (4.2) 
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where C is a constant depending on the hydrocarbon type (79 for dry gas 
and 250 for medium density oil) x and y  are the parameters to be 
determined from log–log plot of kφ −  at a known value of Swi. Several 
other investigators e.g. Tixier, Timur, Coates and Dumanoir 
(Schlumberger, 1989) have also proposed similar formulas.  All these 
relations are restricted to sandstone. 

 
ii) Permeability estimates from nuclear magnetism resonance (NMR) log:  

 
The free fluid index (FFI) which is the volume of fluid that is not bound 
electrically or chemically to the clay lattice, to the surface of the rock 
matrix or to some other mineral lattice is measured by the nuclear 
magnetism resonance log. This is related to irreducible water saturation by 

 

1wi
FFIS
φ

= −      (4.3) 

 
Thus irreducible water saturation can be determined if porosity and FFI 
are known. Then equation 4.2 or a similar relation can be used for 
calculating permeability. Thus by this technique permeability can be 
determined in oil as well as water bearing formations.  

 
(iii) Permeability estimates from well test:  
 

Permeability can also be estimated from the well test in different intervals. 
However using this method we do not obtain a continuous estimate of 
permeability and the estimated permeability is representative of a very 
large area. 

 
 The empirical equation discussed above (equation 4.2) requires a labour 
intensive exercise to adjust constants or exponents. The theoretical relations such 
as the Kozeny Carman equation suffers from the problem that the highly 
complex porous medium is treated in a very simple manner and it ignores the 
influence of conical flow in the constrictions and expansions of flow channels. 
The nuclear magnetism resonance tool is very recent and still is not included in 
the commonly recorded log suite. Well testing also gives permeability only in 
selected intervals and the recovery data is from a very large zone.   

 
Therefore the common industry practice is correlating well logs with core 

permeability in the cored well. A porosity permeability correlation is generated 
which can then be used to predict permeability at the uncored intervals and wells, 
providing appropriate well logs are available.  

 
 The statistical approach is a comparatively more versatile approach.  It 
makes use of the available core permeability as a dependent variable and 
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develops functional relationships with the well log data, which are the 
independent variables.  The multivariate linear regression and multivariate 
histogram technique are the most commonly practised to date.  However, the 
techniques also require the assumption and satisfaction of multi-normal 
behaviour and linearity too in case of multivariate linear regression, and hence 
must be applied with caution. 
 

Besides statistical methods neural networks (MLPs) have become very 
popular in well log analysis.  This technique is non-linear, nonparametric and has 
been applied to permeability prediction from well logs.  Comparative studies 
(Balan et al., 1995; Malki et al., 1996) have shown that MLP gave better 
performance than empirical equations and multiple linear regression (Rogers et 
al., 1995; Huang et al., 1996). 

 
Wendt et al. (1986) reported a study of permeability from well logs using 

the multiple regression technique, showing that the correlation coefficient 
increases when other variables (i.e. logs and log-derived parameters) than 
porosity were included in the prediction.  They found, however, disadvantages 
using multiple regression as a predictive method mainly on two accounts: (i) the 
regression will result in a distribution that is narrower than the original data set, 
and (ii) when prediction of the permeability extremes is a concern, the high and 
low values are enhanced by the weighting scheme in the regression.  Rogers et al. 
(1995) arrived at the same conclusion when comparing regression and neural 
network techniques for predicting permeability from porosity.  In contrast to 
linear regression models, neural networks do not force the prediction towards the 
mean value and the extreme values far outside the range of the training patterns 
automatically will be truncated due to the neuron activation functions. 

 
In Huang et al. (1996) a comparison has been made between the 

permeability predicted by neural network, MLR technique and multiple non-
linear regression (MNLR) technique.  The results from MLR analysis were much 
poorer than the neural network. Then MNLR technique using the Levenberg -
Marquardt procedure assigning a weighting function was used for predicting 
permeability.  The results were marginally better than MLR analysis but compare 
poorly with the neural network results.  
 

However one important problem in predicting permeability is its large 
dynamic range of 10-6 (10-3 in case of reservoirs) to 104 mD. One single network 
may not have the proper resolution to cover this large range. This study provides 
first an attempt to predict permeability using a single neural network and then a 
CM approach by splitting the permeability range (Bhatt and Helle, 2001a).  

 
However when core and wire line data are combined to establish the 

networks for quantitative prediction of petrophysical quantities such as porosity 
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and permeability we should keep in mind the following possible errors in data. 
These are discussed in detail in Helle et al. (2001). 

 
 

4.2 Errors in data 
 

4.2.1 Measurement conditions  
 
 
 Permeability of the core plugs is normally measured at atmospheric 
pressure using air, and the Klinkenberg correction is subsequently applied to 
convert to equivalent fluid permeability. Standard core permeability data thus 
represent values at the surface while logs are obtained at in situ conditions in the 
reservoir where the confining pressures are more than 200 bars.  Compression of 
the rock changes the pore and the pore throat size distribution.  Changes in the 
pores may increase the tortuosity and close some of the fluid-flow paths.    At the 
surface the permeability of a core sample may be overestimated by a factor of 
two compared with its in situ value. 

 
Enforcing the same measurement conditions for laboratory and log data 

requires core data at simulated reservoir conditions.  The industry practice, 
however, is to use core data measured at ambient conditions to calibrate log data 
measured in situ.  This practice, which is sometimes necessary for financial 
reasons or because of technical shortcomings, is scientifically unsatisfactory. 

 
In particular, cores collected at large depths when brought to the surface 

are exposed to mechanical deformation and micro cracking that significantly 
increases the surface values of permeability and porosity compared with those in 
situ.  We may also expect significant scatter in the porosity and permeability data 
since the mechanical impact may differ for individual rock samples due to 
different composition and sampling history of the core plug. Figure 4.1 show 
values of Klinkenberg corrected air permeability on 11 core plugs from well 
30/6-9 at different confining pressures from special core analysis (SCAL) of the 
well. The changes with pressure are particularly strong at pressures approaching 
atmospheric pressure when the micro cracks tend to open.   The porosity and 
permeability vs. pressure curves are similar for the majority of the core samples 
while a few are highly offset from the average curve, indicating that large scatter 
in the surface values of porosity and permeability may be due to the different 
pressure effects on the individual core plugs.   While the general trend for the 
permeability reveals that high-permeable rocks are more prone to pressure effects 
than low-permeable rocks, one of the samples shown in Figure 4.1a demonstrates 
the opposite behavior.  A local or generally valid pressure correction formula is 
thus not easy to establish.  Thus correction for the pressure effects is a difficult 
problem that cannot be solved within the present industry practice where only a 
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small collection of core samples from a field is used for investigating the effect 
of overburden pressure.  While porosity at low effective pressure may be 
overestimated by 5-15 % (as shown in Figure 3.9b), the corresponding 
permeability data may be in error by 20-100% depending on the rock texture and 
history of the individual sample. 

 
On the other hand, by reassembling the SCAL data we find a relatively 

consistent relationship (Figure 4.1b) that may be used to convert usual air-
permeability data to equivalent values of water permeability at depth. Since the 
air-to-water-permeability conversion seems to be a strong function of 
permeability itself, some of the scatter observed in the permeability data could 
obviously be removed by presenting water-permeability at reservoir pressure 
instead of air-permeability at atmospheric pressure. There is no obvious 
procedure to convert air-permeability data at atmospheric pressure to fluid 
permeability data at in situ conditions.  From the results in Figure 4.1b we find 
e.g. that an air-permeability of 10 D at atmospheric pressure reduces by 40% to a 
water-permeability of 6 D at 200 Bar, while for a 100 mD sample the 
corresponding reduction only amounts to 15% (85 mD).  The scatter in data, 
however, is too high for accepting the corresponding empirical formula for 
pressure corrections.  Thus, to avoid introducing erroneous overburden 
corrections to the core data we have in the study used the raw Klinkenberg 
permeability supplied by the core laboratory.   However, the problem is of 
significant practical importance and hence should be subjected to further studies. 
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Figure 4.1: a) Relative changes in water permeability with confining 
pressure from SCAL study in well 30/6-9  b) water permeability for a 
range of confining pressure vs. Klinkenberg permeability at atmospheric 
pressure 
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4.2.2 Resolution and spatial sampling 
 

Worthington (1991) provides a review of the problems encountered when 
comparing down hole and core measurements.   As with any attempt at 
combining well logs and core data, shifts between recorded well log depths and 
sample depths are possible for a number of reasons.  While every attempt is made 
to remove these depth shifts, undetected depth shifts could cause significant 
errors in porosity and particularly in the permeability predictions. 

 
The spatial scale of the well log measurements is not equivalent to that of 

the rock sample measurements.  Well log measurements are more spatially 
averaged than core data.  Permeability and porosity measured from cores are 
representative of only a small rock mass, while a single well log reading is a 
composite result of petrophysical properties within a radius of cm to m 
depending on which tool is being used.  Small-scale heterogeneity between core 
samples a few centimetres apart may not be resolved by well logs at all. 

 
Due to strong heterogeneity in petrophysical properties, and the 

anisotropic nature of permeability in most natural rocks, it is often difficult to 
define a characteristic volume that is suitable for numerical calculations.  We 
must keep in mind that a measured value from core plugs can serve as an 
estimate of the property over a very small interval.  However there are errors in 
well log data also, caused by poor borehole conditions.  Washout, caving, 
abnormal mud cake, etc. are all capable of adversely affecting well log responses. 
 

4.2.3 Anisotropy 
 

Porosity is a scalar quantity, whereas the rock permeability is a tensor 
owing to the directional alignment of the pore structure of natural sediments.  
Even in the reservoir rocks at hand we find that the ratio of in bedding to normal-
bedding permeability may be one to two orders of magnitude.  Since logging 
tools are confined to the direction of the drill bore it is expected that the log 
readings are affected by anisotropy to various degrees, depending on the drilling 
angle.  But as the variations in the permeability anisotropy are confined to a 
much smaller scale (~0.1 m) than the spatial resolution of the logging tools (~1 m 
for resistivity tool, 0.3 m for density and sonic tool and 0.5m for neutron porosity 
tool), anisotropy variations seem to have less impact on the log readings than 
expected. 

 
With all the above-discussed uncertainties in core and log data, in order to 

find out the optimum architecture of neural network for predicting permeability 
from log data we used synthetic data. 
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4.3 Synthetic data 
 
 

As in the case of porosity, we established a model for the permeability as 
a function of formation properties and generated realistic log values for training 
and testing the permeability networks. The objective is an approximate model 
that is physically reasonable, and where the synthetic logs are functionally related 
to the common parameters such as porosity and clay content that characterize the 
formation.  
 

In natural rocks the permeability varies by several orders of magnitude, 
from nano-Darcys in shaley formations to several Darcys in the best reservoir 
sands.  Because permeability has been observed to be a strong function of the 
clay content (e.g. Klimentos, 1990), a model for realistic permeability profiles 
should explicitly contain clay in its list of variables.  We follow Carcione et al. 
(2000) and introduce a two-component rock consisting of sand and clay particles.   
Permeability for a rock of mixed particle size may be expressed by equation 
(4.1).  The effective grain size is defined by   
 

1
i

i ii
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M DD
= =
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∑∑

             (4.4) 

 
 where Di is the pore or grain dimension for the class i of the distribution, Mi is 
the corresponding particle mass and ƒi is volume fraction of each particle size. 
Following Mavko and Nur (1997) we introduce the percolation porosity φp and 
obtain the following equations for the permeability of a sand-clay mixture   
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             (4.5) 

 

where the clay content c

s c
C φ

φ φ
=

+
,  sD and cD  are the effective particle size of 

sand and clay, respectively, and ands cφ φ  the corresponding volume fractions 
satisfying the relation 
 

1s cφ φ φ+ + =               (4.6)  
To express the effect of clay content on T  we introduce the partial tortuosities a21 
and a23 of Berryman (1980) for fluid flowing through the sand and clay matrix, 
respectively,  
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                   21 12 1sa rφ
φ

= +  and 23 23 1ca rφ
φ

= +   (4.7) 

 
where  r12  and  r23  depend on the geometry of the boundaries separating the 
sand grains from clay and clay from fluid, respectively, normally with values in 
the range 0< rij< 1 but here set to rij = 1/2 for spherical grains, giving the 
following expressions for tortuosity and permeability of the sand-clay mixture 
          

    
1 1

(1 )1 1
2 2

s c

s cT
φ φ

φ φ φ
φ φ
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   (4.8) 

 
 
By fixing the parameters pφ =0.035, sD = 100 µm, cD = 2 µm (see e.g. 

Mavko et al., 1997, p. 261-263) and B = 50 (which is a fair mean of the values 
for B determined to be in the range 5-100 by Rose and Bruce, 1949) we can now 
model permeability from (equation 4.5) as a function of porosity and clay 
content. Then we follow a similar procedure as for porosity, but substitute the 
resistivity by the neutron porosity log based on practical experience with real 
data and, moreover, we add the gamma-ray log which is the common indicator 
for lithology and clay content. The recipe applied is then the following: 
 

 
i) From the density-porosity equation (3.3) we establish a porosity profile 

from models of fρ , mρ  and ρ  ( as shown in Figure 4.2).  For the fluid 
saturation and fρ  we use the same model as for porosity (as shown in 
Figure 3.1), but introduce larger variations in the model for bulk density 
ρ  in order to obtain the appropriate range of permeability values 
(equation 4.5) by a corresponding expansion of the porosity range.  

 
ii) A model for the clay content C  is then designed.  The introduction of clay 

reduces the lower limit of permeability of the model and thus expands the 
effective range of variation to cover the entire reservoir range from micro-
Darcy to a few Darcy.    As shown in the following steps the variations in 
C with depth, are not only reflected in permeability but also in the gamma 
log, the sonic log and the neutron porosity log. 

 
iii) The gamma log is then produced from the clay model by using the 

empirical equation of Larionov (1969) 
 

2(2 1) /3C γ∆= −              (4.9) 
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where ) / )( (Min Max Minγ γ γ γ γ∆ = − − and where γ  is the actual gamma 
log reading, Minγ  = 20 API is the reading for pure sand and Maxγ = 139 
API is the reading for pure clay. 

 
iv) From the C model we also establish the sonic transit time for the rock 

mixture by the equation  (1 )m c st C t C t∆ = ∆ + − ∆ , with st∆ =55 µs/ft and 

ct∆ = 75 µs/ft  (Brigaud et al., 1992, Table 2) 
 
v) Given the porosity model, a model for mt∆ , the fluid saturation model 

provides ft∆  from (equation 3.5) and we compute the sonic log t∆ from 
Wyllie’s equation (3.4). The input synthetic logs for the model are shown 
in Figure 4.2. 

 
vi) From the partial fluid saturation model (Figure 3.1), the φ  and C profiles 

we now obtain the neutron porosity log by the relation  
 

( ) (1 )[ (1 ) ]N w w o o g g C SS H S H S H CH C Hφ φ φ= + + + − + −         (4.10) 
 
 
where Hi is the hydrogen index of the constituent i.  For the pore fluids the 

hydrogen indices are given by  1.1w wH ρ= , 0 1.1 oH ρ= and 1.2g gH ρ= , and 
for the rock material  we use CH =0.05, SH =0.001 (Sclumberger, 1989). 

 
The resulting data set are four synthetic input logs; density, gamma, sonic 

and neutron porosity ( , , and )Ntρ γ ϕ∆  and the output synthetic permeability 
data (K), each consisting of 3000 samples. Duplicates were made by adding 
independent random noise of 2.5, 5 and 10%.  Subsets consisting of 75-350 
samples were then selected at regular depth intervals to use for training patterns.  
In Figure 4.2(b) is shown the data set with 10 % independent random noise added 
to each log.   
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Figure 4.2a): Model inputs for permeability network 

Figure 4.2b):  Synthetic logs for permeability network with 10 % independent 
random noise added 
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4.4 Optimal design of the network 
 
 

In order to find out the optimal architecture of the network in terms of 
number of hidden neurons and number of samples, we did a similar exercise as 
for the porosity network. The selection of the input logs is based on the criteria 
which are commonly available in the suite of logs and which are sensitive to 
lithology and porosity. The gamma ray log is highly sensitive to lithology type 
and density; neutron porosity and sonic logs are more sensitive to the porosity 
and to fluid type. Thus given four input neurons and a single output neuron i.e. 
permeability the appropriate number of hidden units remains to be determined by 
the same experimental procedure as for the porosity network. By varying the 
number of hidden units and the number of training samples (as shown in Figure 
4.3 and 4.4) the errors follow essentially the same trends as obtained for the 
porosity neural network (as shown in Figures 3.3-3.4). The standard deviation 
has a more consistent trend showing that for low noise level data i.e. for noise 
free and 2.5% noisy data there is no increase in noise level, with the increasing 
number of neurons the complexity becomes a concern at a higher noise level. 
From Figure 4.3a it is clear that for 5% and 10% noise levels an increase in the 
number of neurons beyond 10 increases the noise level. No consistent trend could 
be found in the bias. Thus with moderate noise the minimum error is confined to 
a number of hidden units around 10, the same as for the porosity network.  The 
error versus number of training samples, on the other hand, still reveals a strong 
decline at 150 samples and continues beyond 300 samples as shown in Figure 
4.4a. A training set twice the size of that for the porosity network can thus be 
justified in order to reduce the error of the permeability network well below the 
“natural scatter” in the permeability data. 

 
Thus in the experiments with synthetic data we use 300 patterns. 

However, because of the practical limitation in the access to a sufficient number 
of well-represented training samples, the network for real data is based on only 
260 samples. Thus the optimal architecture of the network is 260 samples and 10 
hidden neurons. 

 
Using synthetic dataset and the optimal architecture of the network we 

made a comparison between the performance of a single neural network and 
MLR technique, the results are shown in Figure 4.5. It is evident from the figure 
that due to no linearity in permeability relation the performance of even one 
single network is much better than that of MLR technique. The maximum error 
in the MLR permeability is about 0.5 in terms of logarithmic permeability, 
whereas the model and the neural network permeability overlap each other. 
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Figure 4.3: Variation of  bias and standard deviation with number of 
neurons 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Variation of  bias and standard deviation with number of 
training facts 
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Figure 4.5: Comparison of MLR and neural network prediction for noise-
free data  
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normalized and mapped into an interval [-1 1].  A major concern, however, is the 
loss of resolution implied by fitting the entire permeability range into a single 
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the MNN architecture the training dataset was split into three permeability ranges 
and then we exploited the ensemble combination as well as the modular 
combination; i.e. each module is dedicated to a restricted permeability range 
(task) and the modules in turn are combined to cover the entire range.  Moreover, 
the module for a given range is itself an ensemble combination where a number 
of neural networks are redundantly combined.  The underlying recipe is the 
following: 

 
 

i) The N training patterns are sub-divided into K sub-sets of permeability facts 
with over-lapping boundaries, implying that patterns are duplicated within the 

over-lapping zones, such that 
1

K

i
i

N N
=

< ∑  where Ni is the number of patterns 

in ith subset. 
 
ii) The K modules are trained for each set of Ni over-lapping patterns. 
 
iii)  Each module consisting of m neural networks connected in parallel (as 

shown in Figure 3.11), trained on the same pattern subset, and redundantly 
combined over the random initial weights.   

 
iv) A gating network has been designed to dictate output from the appropriate 

expert. It shares the input with the experts and has identical architecture to 
that of the expert networks, but is trained for the entire permeability range 
using all N patterns.  Thus, the low-resolution gating network determines the 
actual range, and then triggers the corresponding high-resolution expert and 
the outputs are subsequently combined. So in the combiner the appropriate 
value of the permeability is assigned to each depth sample. 

 
The architecture of the permeability CM is shown in Figure 4.6. In the 

example shown in Figure 4.7 we use three sub-ranges (K=3) and with each 
expert consists of five neural networks (m=5).  The figure shows the model 
permeability and the permeability predicted by the three experts in different 
ranges. There is a very good agreement between the two. Because of the non-
linear (log10) representation of the output permeability we are faced with several 
problems in using the OLC as shown in Figure 4.8.  This will be analyzed as 
follows: 
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Figure 4.6: Block diagram of a CM for permeability prediction with range 
splitting 
 

Figure 4.7: Example showing permeability range splitting with overlapping 
ranges 
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4.5 Error analysis of the committee networks 
 
 

In order to form a CM of networks we have compared here the different 
approaches for training and the combination of networks. The networks have 
been trained by following the over training and the cross-validation approach 
and combined by using simple averaging, uncostrained and the constrained OLC 
approaches. 

 
Let ki   i=1, m be the permeability values obtained from the m networks 

trained on the same patterns but with different initial conditions (randomized 
weights). Let k be the true permeability and ni, i=1, m be the error associated 
with each neural network in the CM.  For a simple ensemble average of the CM 
output we may write  

 

1

1log (log ) log
m

i i AV
i

k k n k n
m =

= + = +∑ ,  (4.11) 

 
where it is assumed that outputs from each network are similar i.e.  
 

1 2.......... mk k k k≈ ≈ ≈    (4.12) 
 
For small values of m (m = 5-10 in the experiments)  
 

1

1 0
m

AV i
i

n n
m =

= ≠∑     (4.13) 

 
implying that the error term AVn contains a finite bias plus random noise.  
However, for large values of m  
 

 0AVn →        (4.14) 
 

For the unconstrained OLC with a constant term (to correct for the bias 
as in the porosity CM) we may write  
 

0
0 1

log (log ) log
m m

i i i i OLC
i i

k k n k nα α α
= =

= + = + +∑ ∑  (4.15) 

 
where the error term  

 

0 0 1 0

m m m m

OLC i i i i AV i
i i i i

n n n mnα α α
= = = =

= ≤ =∑ ∑ ∑ ∑   (4.16) 
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implying that OLCn  has an upper bound that increases proportionately to m and 
thus 
 

OLC AVn n>       (4.17) 

In case of constrained OLC i.e. 
1

1
m

i
i

α
=

=∑  and with 0 0α =  equation 4.15 becomes 

 
log log OLCk k n= +     (4.18) 

 
and still     OLC AVn n>    (from equation 4.17) 
 
 

Thus we see that for combining the permeability networks the constrained 
OLC approach (Hashem, 1997) is better than the unconstrained approach but still 
the simple averaging (equation 4.11) is superior to the OLC as also shown by the 
numerical experiment in Figure 4.8 which shows the constrained OLC (equation 
4.18) where the blow-up of noise in the case of OLC is evident. Since the OLC 
approach does not work properly in the case of log10k, and since the variance has 
become a serious problem, the idea of over-training to reduce bias on account of 
increasing variance is no longer applicable.  The concern is now to reduce the 
variance of the individual neural networks in the CM and still keep the bias at a 
sufficiently low level.  Instead of over-training the neural networks we validate 
the network output against the validation set. When the variance reaches its 
minimum the training stops.  In Figure 4.8a we have compared the validation 
method with the over-training method for the permeability CM, using both the 
OLC (equation 4.18) and the simple average (equation 4.11).  The results clearly 
reveal that the simple ensemble averaging, using the validation criteria for 
training the individual neural networks, is the optimum approach for the 
permeability networks at hand. 
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Figure 4.8: Comparison of bias and variance (a) for alternative training and 
combination methods (b)predictions based on OLC-overtraining  method 
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oil and gas bearing well (30/9-B-20) and the water bearing well 30/9-11, 
therefore the network has a complete range of reservoir fluids.  It is very 
important that the network should never be trained on the unresolved dataset.  
The shale permeabilities were added from the Haltenbanken area from the study 
of Krooss et al. (1998). This low permeability shale data was added to tune the 
network for basin scale applications (Bhatt, 1998).  By adding the six low-
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permeability shale points in the range 0.5-39 nD to the standard core analysis 
permeability in the range 34 µD  - 12 D we have covered most sediments within 
the prospective depths in the Viking Graben.  Most of the training facts are 
conventional Klinkenberg corrected permeability measurements on core plugs.  
While the porosity network is based on samples both from Tertiary and Jurassic, 
all training facts for the permeability network are confined to cored sections from 
upper Jurassic.  The training patterns are dominated by wells outside the test field 
i.e. the Oseberg-field, and the majority of facts are from Brage-field which is in 
the same area.  The trained network has been tested on several wells from the 
Oseberg field.  The results of this network for permeability predictions in the 
cored reservoir intervals of two wells are shown in Figures 4.9 and 4.10. 

 
Well 30/6-4 is completely unknown to the network.  It is an oil bearing 

well with a hole deviation of 0-1 degrees.  The core data is available in the 
Rannoch and the Oseberg formation.  The permeability prediction by neural 
network matches very well with the Klinkenberg corrected core permeability in 
most of the intervals as shown in Figure 4.9b and c.  The error distribution is 
shown in the form of the histogram of the difference between the logarithm of 
core permeability and that of the neural network predicted permeability.  The 
error distribution fits the Gaussian model so the mean values and the standard 
deviation shown are for the Gaussian model. In Figure 4.9b the mean error is 
very close to zero.  The reason for the standard deviation of 0.28 is the fine 
layering in the bottom part of the Oseberg formation (2668-85m). Due to the 
small scale heterogeneity there is scattering in the core data whereas the neural 
network prediction of permeability gives about a mean value in this interval.  
There are two reasons for this mismatch, firstly the spatial resolution of log data 
is poorer than that of core data and secondly less resolution of the network, 
which is trained on the whole, range of permeability.  As a result the network 
does not have a high resolution because the transfer function normalises the 
whole dataset in the range of -1 to +1.  The sonic log has the best resolution i.e. 
about 0.3-0.6m and then the density but for the rest of the logs the resolution is 
about 0.5m to about 1m.  Here also in the sonic and density logs a marked 
increase in the amplitude of short-length variations coincides with intervals 
where core data exhibit maximum scattering.  So there is not much we can do to 
improve the log resolution except that we should include the high resolution logs 
available as inputs.  The second problem is remedied to some extent by either 
reducing the permeability range or using a range splitting permeability CM 
architecture as shown in Figure 4.6.  
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Figure 4.9: (a) Comparison of permeability predictions with core data in well 
30/6-4, (b) error distribution 

 
 
Figure 4.10 shows the comparison of Klinkenberg corrected core 

permeability with the permeability predicted by neural network in well 30/9-B-
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3158m.), then Etive (3158-3162m), then Rannoch (3162-3167m.) and finally the 
Oseberg formation (3167-3220m.). The Tarbert formation, which is fairly 
homogeneous, shows a fairly good match between the two permeabilities. There 
is however, an overprediction of permeability in the top part of Tarbert 
formation. The scattering is more in the heterogeneous Ness formation due to 
thin bed heterogeneities.  There is a good match in the Etive, Rannoch and in top 
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part of the Oseberg formation (3164-3195m.). There is an overprediction of 
permeability by neural network in bottom part of Oseberg formations (3195-
3220m.) due to fine layerings so the log gives a mean value of the permeability. 
In Figure 4.10b the mean error is 0.15 logarithmic permeability and a standard 
deviation of 0.48 logarithmic permeability.  However the reason for the high 
standard deviation is mainly due to the large scattering in the core data and the 
spatial resolution of the logging tools as discussed. Figure 4.10c shows the 
correlation between the neural network predicted permeability and the core 
permeability.  The reason for the poor correlation coefficient is mainly due to the 
discrepancy in core and neural network predicted permeability towards low 
permeability end. This is because in the training dataset we gave 6 points of low 
permeability i.e. nano darcy from Krooss et al. (1998). In general in laboratory so 
low permeabilities cannot be estimated but in real formations it is not unnatural 
to have low permeability cemented  and carbonate streaks.  Thus the network is 
predicting very low permeabilities in some streaks in Ness formation where as 
the core data doesn’t.  

 
Figure 4.11 shows the core photograph of the Etive and the Rannoch 

formations. The core photograph shows that the Etive is clean sand whereas the 
Rannoch is a silty sand. The Figure 4.12 displays the small-scale heterogeneities, 
which are beyond the resolution of logs. 
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Figure 4.10: (a) Comparison of  permeability predictions with core data in
well 30/9-B-20, (b) error distribution (c) crossplott of core against neural
network permeability. 
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Figure 4.11: (a) The Etive formation well 30/9-B-3 2781-2782 m  (b) Transition 
of the Etive into the Rannoch formation well 30/9-B-50 H, 3238.5-3239.0 m
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Figure 4.12: Comparison of log and core derived permeability values with the 
core photograph.    
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MLR and a single network as shown in Figures 4.5 and 4.13. As discussed in 
Bhatt and Helle (2001a) range splitting by the CM helps to resolve details in the 
combination of log that otherwise are invisible. The latter is demonstrated in 
Figure 4.13a where we show details in the CM predictions, which are not 
captured by a single neural network. This example is taken from a water bearing 
vertical well 30/9-1. The encircled portions show the improvement by CM 
architecture. The underprediction and poor resolution of permeabilities by single 
neural network which are due to the large dynamic range of the training dataset 
are, improved by the range splitting in the CM (encircled portions).   As shown in 
Figure 4.13b there is a reduction in bias and variance also along with the 
improvement in the resolution of the networks by using CM architecture.  The 
same has been illustrated in Figure 4.13c. 

 
The next example shown in Figure 4.14 is taken from well 30/9-B-20. 

Compared with previous predictions based on single neural network (as shown 
in Figure 4.10) more details of the core data are now reproduced. Due to the 
increased resolution of the network because of range splitting the network is able 
to predict permeabilities in the bottom part of the Oseberg formation (3195-
3220), which also has fine layering, and in the top part of the Tarbert formation. 
The encircled portion shows the improvement. The overall error between 
predictions and core measurements has been also significantly reduced. As 
shown in Figure 4.14a the mean error has been reduced from 0.155 to 0.04 and 
standard deviation from 0.475 to 0.3.  There is also higher correlation between 
the core permeability and CM permeability (Figure 4.14c shows the improved 
results). There still remains the discrepancy between core and CM predicted 
permeabilities in the Ness formation because of the higher heterogeneity in thin 
layers.  
 

In most of the results discussed yet on real data showed a standard 
deviation of about 0.3 logarithmic permeability which is quite low compared 
with standard industry practice (multivariate linear regression technique) keeping 
in mind all the errors between core and log data. In Huang et al. (1997) also the 
predicted permeability by neural network had an average error of less than ± 0.5 
logarithmic permeability.  
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Figure 4.13: (a) Comparison of permeability predicted by neural
network and a CM in well 30/9-1, (b) error distributions (c) 
crossplott of core against CM permeability. 
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4.7 Conclusions 
 
 

The neural network approach to permeability prediction is much more 
advantageous than any conventional method, which includes empirical formulas 
based on linear regression models or the common semi-empirical formulas such 
as the Wyllie and Rose model or the Kozeny-Carman equation because 
knowledge of a mathematical model is not necessary.  

 
The benefits of modularity by decomposing the permeability range into a 

number of sub-ranges increases the resolution in comparison with a single 
network trained on the whole range of permeability. The increase in resolution 
could also be achieved by reducing the dynamic range of the training dataset. 
But in this study we desired to predict permeabilities on the basin scale so we 
kept a large dynamic range of the training dataset. 

 
Synthetic data based on a background model of Kozeny-Carman type 

with porosity and clay content as the independent variables helped in evaluating 
the optimal architecture of the network, training procedure and the size of 
training dataset. With the four inputs; i.e. sonic, density, gamma, neutron 
porosity, the optimal number of hidden units of the permeability neural network 
is confined to the range 8-12 where the variance and bias are at their minima.  In 
general, the errors steadily decrease with the number of training facts.  A 
practical lower limit has been set to 300, or twice the size of the training set 
required for the porosity network due to the increased complexity of the 
background relationships with the log readings. 

 
Since we use a logarithmic permeability scale rather than a linear scale, 

the success of OLC in the porosity CM is not repeated when it is applied to the 
permeability CM.  In fact noise amplification takes place.  Simple ensemble 
averaging is shown to be the preferred method of combining the outputs.  
However, with a relatively small number of neural network components in the 
CM, the variance associated with the individual networks becomes a major 
problem. The normal success of over-training to reduce bias is replaced by errors 
due to increasing variance.  A different training strategy must be applied using 
the validation approach, which requires the training to stop when the level of 
minimum variance has been reached.  

 
Provided that precautions are taken, the permeability CM is more capable 

of handling the non-linearity and noise than MLR and a single neural network. In 
application to real data a minimum standard error of the difference between 
prediction and Klinkenberg corrected permeability data seems to be around 0.3 in 
logarithmic units (of mD), mainly due to limitations in the techniques of 
measurement.  
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Thus our permeability predictions are sufficiently accurate for most 
practical purposes, given the limitations due to the spatial resolution of the 
logging instruments, depth shifting between core and logs and the expanded 
range covered by the permeability values. Application to real-time data (MWD) 
is the obvious extension of this technique. 
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Chapter 5 
Fluid saturation prediction 
 

5.1 Introduction 
 
Apart from porosity, permeability of the reservoir rock and the type of 

fluid it is important to know the hydrocarbon saturation of the reservoir in order 
to estimate the total reserves and to determine if the accumulation is commercial. 
The saturation of a formation is defined as the fraction of its pore volume 
occupied by the fluid considered. The direct sampling of the reservoir fluid is not 
technically and commercially efficient so the preferred method to date is to use 
well logs for fluid saturation prediction. Moreover the logs provide a continuous 
record of the formation also. 

 
Although the common saturation models such as those of Archie (1942) 

and Poupon (1971) are based on sound scientific and technical reasoning, they 
are still non-universal and non-linear empirical relations that need to be fitted to 
real data.  These are the main justifications for employing the neural network 
techniques in predicting fluid saturation. The neural network approach is very 
pragmatic and non-linear, and may even be trained to display the expertise of a 
skilled petrophysicist.  Helle et al. (2001) demonstrated that a network trained for 
porosity prediction provides excellent accuracy for all pore fluids implying that, 
after training for different fluids and partial saturation, knowledge of the fluid 
properties is embedded in the network. 

 
The purpose here is to establish networks for fluid saturation only using 

the log readings, without relying on functions that explicitly depend on porosity 
and auxiliary parameters derived from laboratory measurements.  Since the 
network has to learn from data provided through a careful petrophysical analysis, 
the idea is not to eliminate the petrophysical work behind the saturation logs, but 
to transfer into the neural network for future application the effort and expertise 
already embedded in the petrophysical database.   An obvious application is 
predicting while drilling, when the data required for conventional petrophysical 
evaluation are not yet available. 

 
In this study we test the performance of alternative neural network 

configurations for saturation using model data and real data. We generate 
synthetic logs, with various levels of noise, for evaluating the optimal network 
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architecture by employing a model of mixed fluid saturation and the common 
formulae relating water saturation to well log response.  From a large number of 
individually trained networks (~20) we select the best subset (~5-10) to be 
included in a committee neural net, or committee machine (CM), following the 
“test and select” approach suggested by Sharkey et al. (2000).  We compare the 
performance of the individual expert of the CM with various methods of 
combining the ensemble to obtain best accuracy.  For completeness, we also 
compare the neural network results with those of the conventional multiple linear 
regression (MLR) technique to demonstrate that the accuracy of the MLR 
approach is less than that of the simplest possible neural network architecture 
needed to represent the problem. Using a generalised committee neural network 
for fluid properties we apply the new technique to real data from the North Sea. 

 

5.2 Water saturation measurement on cores 
 

Apart from calculating water saturation (Sw) on logs, which is the common 
industry practice, occasionally Sw measurements are made on cores also. 
Following are some of the methods by which Sw can be estimated on cores: 
  

5.2.1 Retort method 
 

This is a technique for measuring the fluid saturations in a core sample by 
heating the sample and measuring the volumes of water and oil driven off. The 
sample is crushed and weighed before being placed in the retort.  It is then heated 
in stages or directly to 650oC during which the fluids are vaporized, collected, 
condensed and separated. Plateaus in the rise of the cumulative water volume 
with temperature are sometimes analysed to indicate when free water, surface 
clay-bound water and interlayer clay-bound water have been driven off. The 
volumes of water and oil are measured directly, but corrections are needed to 
account for alterations in the water and oil because of the dissolved gas. The 
volume of gas also is needed for accurate results. This is measured on a separate, 
adjacent sample by injecting mercury under pressure and measuring the volume 
absorbed.  Before injection, the sample is weighed and its bulk volume 
determined by mercury displacement.  The total pore volume is then the sum of 
the volumes of gas, oil and water. The saturation of each component is the ratio 
of its volume to the total pore volume. 

 

5.2.2 Dean – Stark extraction  
 

This a method for the measurement of fluid saturations in a core sample by 
distillation extraction. The water in the sample is vaporized by boiling solvent, 
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then condensed and collected in a calibrated trap. This gives the volume of water 
in the sample. The solvent is also condensed, then flows back over the sample 
and extracts the oil. Extraction continues for a minimum of two days until the 
extracted solvent is clean or the sample shows no more fluorescence. The weight 
of the sample is measured before and after extraction. The clean and dried 
samples are measured for porosity. The water volume from the extraction gives 
the water saturation values. The oil saturation can be calculated indirectly by 
using weight before and after extraction.  
  

5.3 Log responses to pore fluids  
 

The type of pore fluid, gas, oil or brine is clearly reflected in several well 
logs.  Gas and water are significantly different in density and sonic velocity, 
while the differences are smaller for water and oil.  Assuming a mixed pore-fill of 
water, oil and gas averaged over the scale of measurements, the density fρ  of the 
composite pore fluid is given by 
 

f w w o o g gS S Sρ ρ ρ ρ= + +     (5.2) 
 

where typical values for the densities of the constituents are 
1.03, 0.75w oρ ρ= = and 30.25 g/cmgρ = , and the partial saturations satisfy 

the equation 
 

1w o gS S S+ + =        (5.3) 
 

The fluid saturation profile is the same as used in the synthetic data for porosity 
prediction. The bulk density of the reservoir rock is given by 
 

(1 )f mρ ρ φ ρ φ= + −     (5.4) 
 

where φ  is the porosity and mρ  the density of the rock material, implying that 
the density log is sensitive to the pore-filling fluid as well as the properties of the 
rock itself.   On the other hand, while fρ  may vary within the wide range 0.2 -
1.1 g/cm3 for gas and brine, respectively, the density of siliciclastic rock material 
varies only within a narrow range 2.64-2.80 g/cm3 (Brigaud et al., 1992). The 
variations in bulk density within a typical North Sea siliciclastics reservoir may 
thus mainly be in response to variations in fluid content and composition of the 
pore fluid. 
The transit time for the bulk can be approximated by 

(1 )f mt t tφ φ∆ = ∆ + ∆ −     (5.5) 
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where mt∆  is the transit time of the rock material, which varies in the range 56-
75 µs/ft (Brigaud et al., 1992). The sonic log is therefore a sensitive indicator of 
fluid content and fluid type. 
 

Brine and hydrocarbons, in general, are highly different in resistivity with 
low resistivity for brine (~1 ohmm) and high resistivity for the hydrocarbon-
bearing reservoirs (~100 ohmm or more). Resistivity, in fact, is the most 
important hydrocarbon indicator and, moreover, the resistivity for clean 
sandstone is directly related to the water saturation through Archie’s equation 
(Archie, 1942) 

 
w

t n
w

FRR
S

=             (5.6) 

where the resistivity of the formation water 0.14 ohmmwR = , the formation 

factor  F  is given by m
aF

φ
= ,  where a = 0.625 and the exponents m = n = 2 

using typical values for a North Sea sandstone reservoir.  For sandstones 
containing clay various modifications of Archie’s equation have been proposed 
which have the general form  (Schlumberger, 1989) 
 

2
0 11/ t w wR S Sθ θ= +      (5.7) 

 
where  0θ  is the predominant sand term that is dependent on the amount of 

sand, its porosity, and the resistivity of the saturating water.  The term 1θ  is the 
shale term that depends on the amount and resistivity of the shale.  For clean 
sandstone (5.7) reduces to Archie’s equation (5.6). One of the favourite models 
for calculating effective water saturation Sw in shaley formations has been 
provided by Poupon et al., (1971) who claim that their model is independent of 
the clay distribution.  Based on a modified Archie’s equation the relationship 
between the true resistivity and the formation parameters has been established by 
the equation 

 

   
( )1 2 2

21
C m

ne
w

t C w

C
S

R R aR
φ

− 
 = +  
 

   (5.8) 

where RC is the resistivity of the clay and C is the volume fraction of clay in the 
formation as determined from the clay sensitive logs such as gamma ray, or from 
a combination of neutron and density.  Here eφ  is the effective porosity of the 
formation, i.e. excluding shale porosity. It is calculated from the density log, the 
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grain density measurements of matrix density and the fluid density using the 
standard density-to-porosity transform (equation 5.4). Then the latter is combined 
in a weighted sum of the density porosity and neutron porosity.  Several logs 
other than resistivity thus form the input to the saturation models, plus 
supplementary laboratory data to determine the constants and exponents. Because 
of lack of data the common assumption in petrophysical evaluation is, however, 
that the formation factor a, the cementation exponents m and the saturation 
exponent n as well as the resistivity of the saturating water Rw are constants over 
the field, though significant variations are seen in the laboratory data. Provided a 
sufficient number of core samples has been analysed the actual values of m and n 
may be used rather than their mean values.  

 
All the models from which water saturation is calculated are empirical, 

either determined during laboratory investigations, or from field experience. 
There are significant uncertainties in estimation of formation parameters. The 
relative change in Sw from Archie’s equation arising from errors in all the 
measured variables can be given by: 

 
1 ln ln( )w w t

w
w w t

S a R RS n m m
S n a R R

φ φ
φ

 ∆ ∆ ∆ ∆ ∆
= − ∆ + + − − ∆ − 

 
           (5.9) 

 
Thus all the parameters Rw , Rt , a and φ contribute to the total error wS∆ . 

If m=2 porosity errors are twice as significant as resistivity errors. Errors in n 
could lead to significant errors in Sw at small water saturations, while errors in m 
can be important for low porosity media.  Keeping all other parameters constant 
for a formation of 31.6% porosity and 31.6% water saturation with m, n=2 a 
relative error of 2.5% in the measurement of a, m, n, φ , Rw and Rt  taken one at a 
time causes a relative error of 1.25%, 5.7%, 3%, 2.5%, 1.25%, and 1.25% in Sw 
values, respectively.  The maximum errors in Sw are due to errors in m and n. A 
relative error of 2.5% in the measurement of n is very optimistic. In reality it can 
be up to 20% which can lead to large uncertainties in Sw values. 

 
The parameter m is also affected by a large number of factors including 

grain texture, pore configuration and size, constrictions existing in a porous 
system, tortuosity, type of pore system (inter-granular, inter-crystalline, vuggy, 
fractured), compaction due to overburden pressure and presence of clay minerals.  
The main effect of these parameters is to modify the formation resistivity factor 
F.  Consequently, their combination can produce a range of values of F and m for 
a given porosity.  In a case study in a reef type limestone (Tiab and Donaldsson et 
al., 1996) when the overburden pressure increases from 0 to 35 MPa, the value of 
m increases from 1.99 to 2.23, causing a relative error of 0.5 % to 11.5% in the 
value of m.   
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Furthermore the parameters are generally obtained under ambient 
conditions instead of reservoir conditions.  In the study made by Søndenå et al. 
(1990) the results from the electrical resistivity measurement from cores from a 
North Sea reservoir showed that the saturation exponents obtained at the reservoir 
conditions are lower than those obtained under ambient conditions and that they 
also slightly increased when the effective stress was increased. Thus it is crucial 
to have careful laboratory measurements of m and n parameters. However in the 
present study we have not eliminated these errors from Sw as the errors are 
already there in the Sw calculation from CPI logs against which we have 
calibrated the neural network model.  

 
Being aware of the uncertainties in the empirical relation Woodhouse 

(1998) suggested Sw measurement by the extraction of reservoir formation water 
from core plugs cored with oil-based mud. The study shows that after small 
systematic corrections the cores gave accurate in situ reservoir Sw measurements 
valid over a wide range of Sw values and throughout most of the transition zone (a 
reservoir interval extending from the fluid contact upwards, where water 
saturation is higher than the irreducible saturation). During coring no significant 
amounts of reservoir formation water were mobilised and displaced from the 
cores except those, which were taken from and below the OWC. Rapidly drilled 
cores, with incomplete penetration and pressure-retained cores provided 
conclusive proof. He found out that Sw measurements by this method are 
consistent with the Sw measured on logs or by capillary pressure method. 

 
The neural network model is fully empirical, non-linear and may even be 

trained to display the expertise of a skilled petrophysicist. The idea here is thus to 
establish networks for fluid saturation prediction based on a petrophysical 
database.  

 

5.4 Synthetic data 
 

Before applying a new method to real data the common practice in 
development and testing of geophysical methods and algorithms is to use 
synthetic data in order to maintain full control. We use for simplicity the clean 
sandstone model (equation 5.6).  We generate the three synthetic logs, which 
have clear physical relationships to the fluid properties for input to the prediction; 
i.e. density, sonic and resistivity. The generation of these three synthetic logs is 
the same as we have discussed in section 3.1 with porosity prediction. In addition 
we include the neutron porosity log, which is an indicator of the abundance of 
hydrogen nuclei, and a common indicator to distinguish whether hydrocarbons 
are in the gas or fluid phase. 
 

From the partial fluid saturation model of equation (5.3) and with φ  from 
equation (5.4), we obtain the neutron porosity log from the relation  
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( ) (1 )N w w o o g g SS H S H S H Hφ φ φ= + + + −    (5.10) 
 

where Hi is the hydrogen index of the constituent i.  For the different pore fill 
components the hydrogen indices are given by 1.1w wH ρ= , 0 1.1 oH ρ= and 

1.2g gH ρ= , and for the rock material (sand) we use SH =0.001 (Schlumberger, 
1989).  The four synthetic input logs; density, sonic, resistivity and neutron 
porosity ( , , and )t Nt Rρ ϕ∆  are shown in Figure 5.1 without noise (a) and with 
10% noise added (b), respectively.  Four different data sets, each consisting of 
3000 samples, were created with independent random noise of 0, 2.5, 5 and 10% 
added to each log, including the saturations.  Subsets consisting of 150 samples, 
or 5% of the total record, were then selected at regular depth intervals to use as 
training patterns for the neural networks. 
 

5.5 Optimal design of networks  
 
 

In the optimal design of fluid saturation network other than the two basic 
questions of 1) how much data and 2) how many neurons do we need we are 
faced with the additional problem of determining the number of outputs; i.e.  

 
i) Is prediction of a single component; e.g. the water saturation Sw  

sufficient? 
 
ii) Should we rather determine two outputs; e.g. Sw and Sg and compute the 

third saturation So from equation (5.2) ? 
 
iii) Would it be possible for a neural net to predict all three saturations 

simultaneously? 
 
iv) What is the optimal number of hidden neurons in cases of i), ii) and iii), 

and what is the corresponding number of training patterns required? 
 
v) Should we use separate networks for each fluid component rather than 

multiple outputs? 
 

The answer to (i) may be that in the case of an oil field water and oil are the 
main fluid components.  We thus assume 0gS =  and hence the oil saturation is 
given by 1o wS S= − .  A similar argument applies to a gas field when away from 
a gas-oil transition zone where the components may be present in comparable 
proportions.  But the problem arises in oil- water and gas-oil transition zone for 
knowing the partial saturations of the three fluids independently.  
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In case (ii) we have better control since prediction of two components 
provides the value of the third from equation (5.3).  Only two saturations are, 
however, independent estimates and hence there is no means of control by 
summing to unity.  

 
In case (iii) the three saturations are independently predicted and, 

moreover, equation (5.3) provides an independent control of the prediction 
quality by the fact that the three output neurons should sum to unity within the 
estimated error. For the number of neurons in the hidden and the output layers, 
the obvious relation exists that the number of outputs cannot exceed the number 
of the neurons in the hidden layer, e.g. a single hidden neuron cannot 
simultaneously transfer non-trivial data to more than one output neuron.  Thus, 
given the number of outputs, only the minimum number of hidden units can be 
fixed and the optimal number remains to be determined. The answer to (iv) is 
likely to be that the more outputs the more hidden units are required to reach 
comparable performance to that of the single output.  More hidden neurons, on 
the other hand, imply a more complex network and hence more training patterns 
required to achieve the goal. However, the optimal number of hidden units and 
the corresponding number of patterns needed remain to be determined by 
experiments.  For this reason we exploit the model data, with added noise levels 
0, 2.5, 5 and 10%, to investigate the above questions in more detail.  For training 
the networks we have selected subsets of 25-300 patterns, sampled at regular 
depth intervals, whereas for the error analysis all tests are made against the 3000 
samples in the logs. 

 
With the four input logs and a single output of water saturation Sw we find 

that with minimum number of hidden units, which is one in case of a single 
output, the network clearly fails to reproduce the model as shown in Figure 5.2 
and Figure 5.3.  Using the same data (150 patterns) to fit a multiple linear 
regression model we find, on the other hand, that the model fit is much worse 
even though the number of coefficients to fit is the same (four) for the two 
models.  The assumption of linearity of MLR versus the embedded non-linearity 
in the neural network explains the difference.   Moreover, by adding one more 
neuron to hidden layer we gain significant improvement in favour of neural 
network, in the noise-free data as well as in the case of 10% noise as shown in 
Figure 5.3.  The latter is also evident from Figure 5.4a and b showing that the 
error drops significantly when the number of neurons changes from one to two. 
With a further increase in the number of neurons the bias still changes but the 
standard deviation remains almost constant for higher noise level.  By adding 
neurons beyond 2 to the hidden layer we, in general, still gain accuracy up to 4 
hidden neurons but thereafter the network becomes more sensitive to noise and 
the errors increase. With an optimal number of 4 hidden neurons the error of the 
Sw network is about 0.02, which is below the error level expected in practical 
situations. Similar results are obtained with two outputs, and with three outputs as 
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shown in Figure 5.5 and Figure 5.6.  Here we find that the optimal number of 
hidden neurons is 8 and 10, respectively, in case of 2 and 3 outputs.  

 
For the model used in this study the number of outputs thus seems to have 

minor effects on the accuracy as shown in Figure 5.7 for water saturation (a) and 
gas saturation (b).  For all fluid saturations the standard deviation σ for noisy data  
(10 %) is almost constant at about 0.02 and, moreover, apparently independent of 
the number of output neurons.  Once sufficient numbers of well-represented 
training samples are available the bias is negligibly small as shown in Figure 5.8 
and the standard deviation clearly becomes the leading term in the overall error in 
noisy data.   With a single output the appropriate number of training facts is in 
excess of 100 samples, however, in general, the error still continues to decrease 
with increasing number of facts.  We have thus chosen 150 facts in the above 
experiments. 

 
 A major assumption in network design is that a sufficient number 

of well-represented training samples is available.  In many real situations, 
however, training samples are expensive or difficult to obtain.  Since the problem 
complexity dictates the size of the network, we may end up with fewer useful 
facts than required for a network of a given size. The challenge in network design 
has been the small number of available data, and various methods have been 
proposed for generating virtual samples  (Cho et al., 1997; Wong et al., 2000) to 
compensate for an insufficient number of training samples.  For the problem at 
hand the number of reliable estimates from fluid transition zones, with at least 
two fluids present and of known partial saturation, is normally the main 
limitation.   Since the overall errors are the same for a simple network with one 
single output and four hidden neurons, as for the more complex network with 
three outputs and 10 hidden neurons, the choice of architecture that requires 
minimum training patterns is preferred.  An additional benefit of a simple 
network specialised for a particular fluid, besides the reduced training time, is the 
modularity that can be achieved when such a network constitutes a building block 
of a committee network as will be demonstrated in the following section. 
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Figure 5.1: Model output of synthetic logs for the saturation network (a)Noise 
free and (b) added 10 % random noise 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 5.2: a)Comparison of Sw predicted by MLR and neural network with one 
and two neurons in hidden layer noise free case b)differences with  model Sw 
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Figure 5.3: Comparison of Sw predicted by MLR and neural network with one 
and two neurons in the hidden layer for 10% 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4: (a) Bias, (b) standard deviation for one single output (Sw) with number 
of neurons in hidden layer for different noise levels. 
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Figure 5.5: (a) Bias, (b) standard deviation from network with two outputs (Sw 
and Sg) with number of neurons in hidden layer for different noise levels 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.6: (a)Bias,(b)standard deviation from network with three outputs (Sw , 
Sg,,  So ) with number of neurons in hidden layer for different noise levels 
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Figure 5.7: Errors in (a) Sw and (b)Sg with number of output neurons and optimal 
hidden neurons of 4,8,10 for 1,2,3 outputs respectively 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.8: (a)Bias, (b) standard deviation for one output (Sw) with  the  number 
of training facts for network with four hidden neurons. 
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5.6 CM architecture 
 

Since we know from the previous discussion the advantages of CM 
architecture over the individual network we also used CM for partial fluid 
saturation prediction. The architecture of the CM is the same as used for porosity 
prediction as shown in Figure 3.11. Individual CMs have been developed for 
calculating the saturation of each fluid. The saturation CM for each fluid, with 
nine building blocks consisting of the simple 4-4-1 MLP (4 input-4 hidden-1 
output) has been applied to our model data.  The input neurons are the four logs 
i.e. density, neutron porosity, resistivity and sonic. For each saturation 20 
networks have been trained by overtaining approach and 9 have been carefully 
selected using the 'test and select approach' as suggested in Sharkey et al. 2000. 
The output of the 9 networks is then combined by ensemble average and by the 
OLC approach. The resulting tests with 10% noise are shown in Figure 5.9 by the 
stacked bias and variance histograms that convincingly demonstrate the improved 
accuracy of the CM compared to the single MLP.  Simple ensemble averaging of 
the output significantly reduces the errors, however, the power of the OLC is 
clearly demonstrated by the fact that the overall bias has been eliminated. The 
errors in the final saturation CMs have now been reduced to a variance of less 
than 2x10-4 or a standard deviation of less than 0.015 for Sw, and slightly smaller 
for So and Sg.. The outputs from the three saturation CMs are shown in Figure 
5.10, where their sum is also displayed as a means of independent quality control. 
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Figure 5.9: Stack of bias and variance for each experts (1-9) and ensemble 
average and OLC in three saturation committees for water, oil and gas 
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Figure 5.10: Output from the three saturation CMs and the sum of saturations 

w o gS S SΣ = + +  for independent control 

 

5.7 Real data 
 

Reliable direct measurements of fluid saturation on cores are expensive, 
time consuming and hard to obtain. In the laboratory the fluid saturation of cores 
can be measured by different methods as discussed but the main problem lies that 
some water might be lost while the core is cut and brought to the surface or may 
be evaporated at the rig when exposed to the atmosphere or fluids such as gas 
may be expelled when the pressure on the sample is reduced. So the Sw measured 
on the core may not be the correct representation of the in situ Sw in the reservoir. 
Moreover a small core plug may not be the true representative of the whole 
formation.  

 
 Thus we cannot collect sufficient well-represented training data unless we 

rely upon the log interpretation and careful analysis made by a skilled log analyst. 
The calculated water saturations are based on the standard models e.g. shaly sand 
model, dual water model etc. Here the main input is resistivity and porosity, but 
auxiliary data (such as shale fraction) is in advance estimated based on for 
example density, neutron, and/or gamma ray. Thus behind the water saturation 
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calculation, as in the neural network approach, there is more than one log 
involved to form the final output.  

 
The saturation in the field above the plane of free water level (Sw=1) can 

also be determined if we know the capillary pressure (Pc) versus Sw curve for the 
cores from laboratory. Thus if we know the density of the wetting and the 
nonwetting fluid and height of the core above the free water level then capillary 
pressure can be found out. Once knowing the capillary pressure water saturation 
can be determined by Pc vs Sw curve (Bear, 1988). The free water level can be 
identified by plotting the pressure points of the respective fluid obtained from a 
modular formation dynamics tester  (MDT) or equivalent tools. Thus to obtain a 
complete profile of the saturation by other conventional methods implies some 
effort and more data than the standard well logs.  However, once reliable CPI 
data have been established for a field, we may collect a sufficient number of well-
represented training facts to establish neural nets to accomplish the same 
petrophysical tasks, with equal accuracy, in future wells in that field. The idea 
behind this study was to make the analysis of water saturation faster and accurate 
for the new wells in the field by embedding the information from the previous 
wells in the neural net.  

 
A generalised MNN for fluid properties is shown in Figure 5.11, 

consisting of three expert CMs with a number of MLPs. The architecture of MLP 
is as shown in Figure 2.4 with the number of neurons in the input, hidden and 
output layer as 4-4-1 respectively. For convenience we use 9 MLPs, selected 
from the best of a larger number  (~20) of candidates. The output of the MLPs is 
combined by OLC method. Our training patterns are all based on the water 
saturation values from the standard CPI logs and the hydrocarbon identification.  
In order to add values from transition zones we have used the well logs and the 
relations (5.2)-(5.8) to solve for Sg and So in the fluid mixture.  For obvious 
reasons, the patterns for water saturation cover the entire range and are well 
distributed, while the patterns for oil and gas are dominated by values in the 
upper and lower bounds. In particular gas saturation data of intermediate values 
are hard to obtain since the gas-oil transition zone is narrow. For example it is 
about 3m. in the Oseberg formation as it is a good porous, permeable and 
homogeneous reservoir and so the log gradients are steep. Overall we have 
selected a set of 150 training patterns that are shared by the three saturation 
networks having 40 training patterns from the transition zone of well 30/9-B-20. 
The error distribution after training the 9 MLPs in each CM, and those from the 
combined output from the three saturation CMs, are all shown in Figure 5.12.  
Compared with the synthetic data test as shown in Figure 5.9 where the variance 
and bias contribute by the same order of magnitude in the overall error, the 
variance here surpasses the bias by an order of magnitude in the case of real data.  
As before, we eliminate the bias by OLC while the variances for Sw and So are 
only slightly reduced compared with the simple average. For Sg, on the other 
hand the errors are completely eliminated.  
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The output saturation predictions from the generalised fluid MNN are 
shown in Figure 5.13a and Figure 5.14a.  By access to the complete set of 
saturation logs we are able to discriminate between alternative fluid systems; i.e. 
predominantly oil-water or gas-oil which has a direct application while drilling. 
 

 

Figure 5.11: Block diagram of the generalised fluid property MNN 
 

Well 30/9-B-20 is drilled through three main reservoir sands in the Brent 
group, where the Tarbert formation is oil-bearing, Ness is predominantly water-
bearing but with patches of oil, while the main reservoir sand in the Oseberg 
formation is gas- and oil-bearing with a GOC around 3198m (Figure 5.13).  As 
seen from the resulting saturation values, the changes in fluid properties are well 
detected by the network. There is a very good match between the Sw values 
predicted by the network and the Sw values from CPI log. In the gas and oil zones 
the Sw values are around 0.1, which is the irreducible water saturation.  From this 
well mainly in the transition zone around the gas-oil transition in the Oseberg 
formation, we have selected 40 (out of total 150) training patterns. This well is 
thus partly known to the network in 40 out of the 900 depth samples shown. A 
well, which is completely unknown to the network, is therefore appropriate for 
testing the network as shown in Figure 5.14.   

 
Well 30/9-B-24 K is essentially water bearing in Tarbert, except for oil 

patches in the upper part, while the Ness and the Oseberg formation are oil-
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bearing. The hole deviation is 35 degrees. The well is unknown to the network. 
There are no fluid contacts in the well only the lithological boundaries. There are 
no intervals of gas in this well as reflected in the predicted gas saturation Sg ≈ 0.  
No significant discrepancies between predicted Sw and the CPI logs are seen.  

 
The absolute permeability of a rock is defined as the permeability of the 

rock when only one single fluid is present. Darcy’s law uses it to describe the 
flow of a homogeneous fluid.  However normally in hydrocarbon bearing 
reservoirs there are two or three fluids present together. In such cases effective 
permeability is the permeability of a rock to a particular fluid when that fluid has 
a pore saturation of less than 100%. Their relative viscosities and their relative 
permeabilities determine the relative rates of flow of the fluids. The relative 
permeability is defined as the ratio of the effective permeability to the absolute 
permeability. The relative permeability curves for a rock can be plotted in the 
laboratory by measuring the relative permeabilities of each fluid on cores. Figure 
5.15 shows the normalised relative permeability curves for the Oseberg 
formation.   

 
After the calculation of Sw, So and Sg by the three committees, the 

saturations are collected into the combiner as shown in Figure 5.11. In the 
combiner we also add the normalised relative permeability curves of the Oseberg 
formation. So using the saturations and the equations generated on the normalised 
relative permeability curves we can generate relative permeability logs for the 
different fluids as shown in Figure 5.13b, Figure 5.14b in the Oseberg formation. 
The normalised gas oil relative permeability curves are used above GOC where 
Sg is varying and water is at irreducible water saturation and oil-water normalised 
relative permeability curves below GOC where So is varying and water is at 
irreducible water saturation. As a check, in gas zone we find the highest relative 
permeability, which is of gas, and in the oil zone it is of oil, which is as, 
expected. This indicates that above GOC the mobile phase is gas and below GOC 
above OWC the mobile phase is oil. These relative permeability logs can be used 
in real time by reservoir engineers as an input to the reservoir simulation. 
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Figure 5.12: (left)Bias and std. deviation for one single output (Sw) for 150 
training facts (right) Crossplot of training facts and OLC outputs with linear fit 
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Figure 5.13: Prediction of (a) partial fluid saturation and (b) relative permeability 
logs in well 30/9-B-20in Oseberg formation 
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Figure 5.14: Prediction of (a) partial fluid saturation and (b) relative permeability 
logs in well 30/9-B-24 K in Oseberg formation 
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Figure 5.15: Normalised relative permeability curves for Oseberg field a) for oil-
water system b) for gas-oil system  

 

5.8 Conclusions 
 
The prediction of partial fluid saturation within the reservoir using a neural 

network has many advantages.  In this study we have developed and tested a 
modular artificial neural network system for predicting the underground fluids 
water, oil and gas, and their partial saturation directly from well logs, without 
explicit knowledge of the fluid and rock properties normally required by 
conventional methods.  The idea of using a neural network for fluid saturation is 
not to eliminate the careful petrophysical evaluation behind the CPI log, but to 
transfer into the neural network for future application the effort and expertise 
already embedded in the petrophysical database.  
 

The inputs to the neural network are density, sonic, resistivity and neutron 
porosity.  The numerical experiments on the synthetic data based on a realistic 
petrophysical model are very useful in identifying the architecture of the network 
and the size of the training dataset.  From this experiment we concluded that 
although output of three saturations from a single MLP (4-10-3) reveals the same 
accuracy as those of three individual MLPs with one output (4-4-1), the latter has 
the advantage of simplicity in terms of number of neurons, which implies fewer 
training patterns and faster training.   Moreover, simplicity in the MLP improves 
modularity when used for building blocks in the multi-net system. 

 
For the optimal architecture of MLP with 4-4-1 neurons in the input, 

hidden and the output layer the number of training patterns should be in excess of 
100 to ensure negligible errors in case of data with moderate noise. 
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A committee neural network for each fluid type is the preferred solution, 

with each network consisting of a number of individually trained 4-4-1 MLPs 
connected in parallel and redundantly combined using optimal linear 
combination.   Compared with a single MLP realisation the OLC approach 
implies an overall error reduction by an order of magnitude. 

 
 Building a modular neural network consisting of three CM’s one for each 
fluid type where each CM contains a combination of redundant networks based 
on the optimal architecture whose outputs are combined using OLC approach 
gives a good saturation prediction of the fluids simultaneously in the reservoir.  
The saturation predictions from the fluid CMs are further combined in a modular 
neural network with laboratory measurements of normalised relative permeability 
curves for oil-water and gas-oil fluid systems to output relative permeability logs 
for the three fluids. 
 
 The accuracy in prediction saturation essentially depends on the accuracy 
of the training patterns, which are from the CPI logs, and the accuracy of the 
individual log measurements.  Comparison of Sw values of the neural network 
with those of CPI logs, in wells that are unknown to the network, indicates a 
standard deviation error of less than 0.03, over the complete Brent formation in 
the North Sea which is sufficiently low for all practical purposes.  Fluid 
saturation prediction and generation of relative permeability logs, which can be 
given as, input to reservoir simulation while drilling is an obvious application of 
this technique in real time.  
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Chapter 6 
Lithofacies prediction 
 
6.1 Introduction 

 
The primary task of geological and engineering characterisation of a 

petroleum reservoir is to determine the various lithofacies of the reservoir rocks 
from the examination of cores taken from wells. For technical and financial 
reasons, however, cores are not always sampled in the entire interval of interest.   
In highly deviated and horizontal wells only log data are available. Geological 
stratification and identification of lithofacies, as well as estimation of reservoir 
and fluid properties thus rely upon interpretation of the well logs.   

 
As a prerequisite for the zonation the continuous logs first have to be 

segmented into discrete zones of similar properties, which are the elementary 
units of reference for inferring the correlation between wells. The context and 
objectives of the analysis determine the nature of the zones, which may designate 
lithostratigraphic or petrophysical units or other meaningful geological entities. 
Facies from log measurements are equivalent but not identical to the lithofacies 
inferred from core data because logfacies are the combined results of indirect log 
response to lithology and fluid, whereas lithofacies are defined directly from the 
visible features of rocks.   

 
Manual interpretation of facies from well logs is a labour-intensive process 

that implies a considerable amount of time by an experienced log analyst. Since 
the early days of the introduction of computers to geology, computerised 
numerical procedures mixed with expert reasoning have been employed to 
emulate the heuristic intuitive pattern recognition criteria in the zonation. There 
are several advantages in computerising these procedures.  Numerical methods 
are more powerful than the human brain in simultaneously comprehending a suite 
of multivariate data.  Moreover, the results become objective, consistent, 
reproducible and free from personal bias by the log analyst.   

  
 Numerous numerical methods to carry out these fundamental tasks have 

been proposed. Wolff and Pelissier-Combescure (1982) used FACIOLOG for 
automatically zoning logs into lithofacies. The technique used includes principal 
component and modal distribution analysis. With a suitable selection of input 
logs and zoning algorithm parameters a set of lithofacies can generally be related 
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to the actual geological facies. Boundaries are first detected to identify thin beds, 
transitions and unstable zones for special treatment.  

 
 Delfiner et al. (1987) and Busch et al. (1987) used discriminant factor 

analysis to correlate the log values with lithological units. Discriminant factor 
analysis projects the original log space into a target space of lower dimension 
such that the projected cluster centres are as far apart as possible and the 
projected points of the same cluster are closest to each other. In other words, the 
emphasis is on the selection of the parameters that provide the most 
discrimination. Delfiner et al. use a database of identified lithologies to calibrate 
their logs whereas Busch et al. use only the core data available from a given field. 

 
 Reviews of the early works on computer-aided log-correlation are 

provided in Fang et al. (1992) and Gill et al. (1993). Fang et al. (1992) employed 
pattern recognition techniques  (dynamic waveform matching) to identify 
logfacies. In this method manual or machine zonation of the logs is performed 
first. Then log attributes of two logs are compared and matched in a pass. Each 
matching cycle comprises three passes, thus ensuring optimal global correlation.  

 
 Gill et al. (1993) used multivariate-clustering procedure to reach the same 

objective.  In this method based on the discrimination of zones and logfacies 
from log suites clusters were defined such that within each cluster dispersion is 
minimal.  There are two clustering techniques, which have been discussed. In 
constrained analysis, clusters of lower level are grouped to form new, higher 
level clusters only if their members are vertically next to each other whereas in 
the unconstrained analysis this is relaxed and the programme is free to form 
clusters as it sees fit, based solely on log readings.  The unconstrained analysis 
successfully identified logfacies, specific to a particular zone. 

 
Neural networks in facies classification were introduced during the early 

development of the technology.  Rogers et al. (1992) applied a feed forward 
back-propagating neural network (BPANN) to classify lithology from well logs. 
The network configuration is 3 neurons in the input layer corresponding to 
gamma ray, density and neutron porosity logs. The hidden layer consisted of 3 
and 4 neurons corresponding to two datasets. The output layer consisted of 4 
neurons corresponding to the classification of four lithofacies, which are 
limestone, dolomite, shale and sandstone. In a comparative study of Wong et al. 
(1995) a similar neural network approach was shown to be in favour of the 
discriminant analysis in logfacies classification.   

 
Zhang et al. (1999) identified lithofacies by integrating back propagation 

and self-organising neural networks. The log data was first divided into intervals 
according to the lithofacies identified from cores and then clustered to form 
electrofacies categories by using a self-organising neural network. The average 
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values in each of the electrofacies categories are then consequently selected to be 
the data to train the back propagation network.     

 
Although BPANNs for the most part give satisfactory results, Saggaf and 

Nebrija (2000) argue that the BPANN fails to generalise and therefore suggested 
self-organising competitive supervised and un-supervised neural nets  (Kohonen, 
1989) as a better alternative for logfacies prediction.  However, to resolve 
ambiguities in prediction they had to introduce additional constraints by prior 
knowledge of the stratigraphy. 

 
Neural network methods are in general superior to knowledge-based and 

rule-based expert systems, as they have better generalisation and fault tolerance. 
The network is able to generalise from the training data so that its output is 
similar for inputs that are almost, but not quite the same.  Conventional expert 
systems, on the other hand, are based on logic rules and the concept of similarity 
cannot be attributed to logical rules.    

 
Improved generalisation of the BP-ANN can be achieved by several 

means: Firstly by optimum training approach, validation or weak over-training. 
Secondly by training several neural networks using independent (disjoint) 
training sets and thirdly by forming ensembles from networks trained from 
random initial conditions. 

 
In this study we combine all the listed methods. The approach relies upon 

combining back-propagation neural networks in ensembles and modular systems, 
where the multi-class classification problem of facies identification has been 
reduced to a number of two-class problems.  A fundamental property of a 
logfacies, i.e. that it is composed of several sequential points along the well bore, 
has been exploited by using a recurrent back propagation neural network adopted 
from time-series analysis.  We optimise the modular system by using synthetic 
logs and apply the networks to facies zonation in North Sea wells. 
 

 
6.2 Multiclass classification using modular neural 

networks   and stacked generalisation 
 
   

A single MLP network consisting of an input layer, a hidden layer and an 
output layer (Figure 2.4) is the most commonly used neural network.  The 
network trained with BP algorithm is capable of approximating any static 
function provided sufficiently representative input-output sample pairs are given.  
The latter also include generalized functions such as the Heaviside function.  
However, the disadvantage with an MLP network is the inherent difficulty of 
generalizing beyond the set of examples on which they were trained and thereby 



114                                                                                               Chapter 6. Lithofacies prediction  

  

they may make errors.  A remedy for this deficiency is to construct an ensemble 
of neural nets, where several outputs to each input are combined in some fashion 
(e.g. simple averaging or stacking).   This is in contrast to the traditional approach 
of choosing the best performing net.  Bhatt & Helle (2001a) have demonstrated 
improved porosity and permeability predictions from well logs using ensemble 
combination of neural nets rather than selecting the single best by trial and error 
(Helle et al., 2001).  Moreover, Helle & Bhatt (2001) successfully applied the 
ensemble approach to predict partial fluid saturation. 

 
For multi-class classification problems such as discriminating between 

logfacies in a sequence, the use of a single MLP implies that one output neuron 
for each class would be required.  Many output neurons, on the other hand, 
require a corresponding number of units in the hidden layer which, in turn, 
implies more network weights to be determined and a larger number of training 
patterns to satisfy the increased network complexity.  The idea here is to reduce 
the multi-class classification problem to a number of two-class classification 
tasks in order to maintain a simple architecture of the MLP with a minimum of 
hidden units.  The initial multi-class classification problem is then, in turn, 
accomplished by constructing a modular neural network (MNN) using the simple 
MLP as the building block.  Each component of the MNN, or group of MLPs, has 
been assigned the task of predicting a given logfacies, enabling the MNN to solve 
the multi-class classification problem by voting. The latter assumes that a training 
set is available consisting of sample patterns of known classes (Table 6. 1) and 
the MLP is to be trained to assign these (training) and other (test) samples to their 
respective classes.  As shown by Anand et al. (1995) the modular approach 
significantly improves the training performance in classification tasks such as 
character and speech recognition compared with that of the non-modular 
approach. In a nonmodular network, conflicting signals from different output 
nodes retard learning. Modular learning is more efficient since weight 
modification is guided by only one output. However, whereas the training errors 
were slightly reduced, the errors when applied to test data remained the same, 
indicating that the generalisation performance was not improved by modularity 
alone.   

 
Generalisation performance, on the other hand, can be greatly improved by 

creating ensembles of the MLPs. The main motivation for combining nets in 
redundant ensembles is to guard against the failure of individual components.  
Combining a set of imperfect estimators is a way of managing the recognised 
limitation of the individual estimators; each component net is known to make 
errors but they are combined in such a way as to minimise the effect of these 
errors.  Since we break down the multi-class classification problem to a two-class 
task using simple MLPs, the training and combination of the MLPs in a modular 
system is also greatly simplified.   
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To link these ideas to the current terminology in neural science we follow 
Sharkey et al. (2000) and assign the term ensemble combination to a set of 
redundant networks.  In a committee the component networks are redundant in 
that they all provide a solution to the same task.  The networks are generated by 
varying the initial weights. Although the committee normally achieves a better 
result, any one of the individual members could be used on its own to provide a 
solution to the task.  By contrast, under a modular approach, a task is 
decomposed into a number of sub-tasks and the task solution requires 
contribution from all the several modules.   

 
In the present study we improve generalisation by exploiting the ensemble 

as well as the modular combination; i.e. each module is dedicated to a given 
logfacies and the modules in turn are combined to classify all logfacies in the 
problem at hand.  Moreover, the module for a given logfacies is itself a 
committee where a number of MLPs are redundantly combined.   
 

Table 6. 1: Mean values and range of noise for the three log-facies used for 
synthetic well logs. 

 

6.3 Recurrent networks for enhanced layer 
detection 

 
Recurrent neural networks have been widely used as time-series 

forecasters. Typical examples of this approach are market predictions, 
meteorological and traffic forecasting.  Time series are generally sequences of 
measurements of one or more variables of an underlying dynamic system, whose 
state changes with time as a function of its current state vector 

( )  such that  ( 1)= ( ( ))t t F t+x x x .  The problem is normally to predict the future 
based on the history; i.e. ( )= ( ( ), ( 1),... , ( 1))t d F t t t N+ − − +x x x x  where ( )t d+x  is 
the future state predicted from present time t  based on N  time steps back.  Such 
dynamic system may evolve over time, or space, to a set of points that have a 

 
Facies 1 Facies 2 Facies 3  

Log type Mean Range Mean Range Mean Range 
ρ  (g/cm3) 2.382 0.040 2.391 0.046 2.401 0.042 

∆t  (µs/ft) 86.852 1.790 86.495 1.463 86.142 1.434 

γ  (GAPI) 97.357 10.35 98.654 11.63 99.933 11.72 

Rt  (ohm-m) 3.283 0.146 3.315 0.147 3.348 0.124 
Nphi  (fract) 0.219 0.022 0.214 0.023 0.209 0.020 
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regular and smooth appearance.  However, in a real-world system such as the 
stock market in time, and geophysical logs in space, the nature of the state space 
is obscure; so that the actual variables that contribute to ( )tx  are unknown or 
noisy.  The task of recurrent prediction can thus be rephrased; given 
measurements of one component of the state vector of a dynamic system is it 
possible to reconstruct the chaotic dynamics of the phase space and thereby 
predict the evolution of the measured variable?  According to the embedding 
theorem of Mañé & Takens (see Abarbanel et al., 1993) this is fully possible if 
the size N of the lagged vector, i.e. the embedding dimension, is sufficiently 
large.  Davey et al. (1999) demonstrate that using a recurrent BPANN the number 
of false nearest neighbour predictions ( 1)t +x  drops from 77% to 0.3% by 
increasing from N =2 to N =4, but further increase of N does not reduce the error 
rate.   

Well logs are sequential in distance along the well bore that intersects the 
geological layering at various angles.  While exploration wells may be drilled 
normal to bedding, modern production wells are often sub-horizontal and 
intersect the layer boundaries at low angles.  As a result the thickness of 
lithofacies will vary depending on the well trajectory. Thus the interpretation of 
lithofacies from well logs implies detection of changes while crossing the layer 
boundaries as well as identifying the facies from their characteristic log 
responses.  However in order to compose a layer from the log readings, the 
thickness must be assumed greater than the spatial sampling i.e. layers of 
thickness less than two log samples should be rejected while layers of greater 
thickness should be enhanced.  This property of finite layering will be exploited 
as prior data in a layer enhancement using the recurrent network shown in Figure 
6.1.    The mode of training and operation is a two-step procedure: 

Let x(z) be the log at time t at depth z and h is the output of BPANN after 
prediction.  Then firstly, from a single BPANN  (Figure 2.4) trained for a 
predefined logfacies  s  to give h=1 (true) if the log measurements x are within 
the actual logfacies s, and h=0 (false) if x falls outside, we generate depth-shifted 
logs ( ),.., ( ),.., ( )z p z z q− +x x x and predict the outputs ( ),.., ( ),.., ( )h z p h z h z q− +  
from the BPANN.  The outputs from BPANN fall in the interval h∈ (0,1) when 
applied to training and test data. 

Secondly, we establish the recurrent network (RBPANN) similar to the 
first BPANN (Figure 2.4) but with additional input neurons.  The additional 
inputs are predictions h(z), h(z-2), h(z-1) and h(z+1) where h(z) is the prediction 
from BPANN corresponding to depth z. The RBPANN is now trained against the 
values of h(z) ∈ (0,1). Here we exploit the results of Davey et al. (1999) and set 
the size N = 4  for the lag vector for ( )h z , while keeping zero lag for the logs x.  
The latter is based on the experimental results with synthetic logs as discussed 
below. Also notice that we use “future” predictions ( )h z q+  for input to 
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prediction of the “present” value ( )h z .  The number of input neurons has been 
identified by using synthetic data. The output from RBPANN is denoted by ( )h z . 

 

 

Figure 6.1: MNN architecture for lithofacies prediction. 

 
In Figure 6.2 we show the combination of the BPANN and RBPANN  

(Figure 6.1) imbedded into a committee consisting of M members individually 
trained to detect a specific logfacies.  The output from a CM is denoted by ( )h z .  
While the RBPANNs enhance the layer continuity and reject isolated miss 
predictions, the redundant combination of component networks ensures better 
generalisation. Yang et al. (1996) applied a similar approach to classify a suite of 
six different carbonate lithofacies from well logs. 

 The final MNN network architecture is shown in Figure 6.3 where each 
logfacies s =1, K   has been dedicated to a committee machine CM-s (Figure 6.2).  
Further layer enhancement has been introduced by the RBPANN at the output 
from each CM before the logfacies are presented to the combiner. The output 
from a RBPANN is denoted by ( )h z .  These outputs are then fed into the 
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combiner, which finally produces the results giving presence of one lithofacies at 
a time. 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Architecture of  CM for combination of M modular networks 
 
 

6.4 Optimal design and training of networks for 
classification 

 
 
Designing an optimal architecture of the network with respect to the 

number of training patterns, selection of training patterns, number of hidden 
neurons, training strategy, architecture of CM etc. is equally important for pattern 
recognition as for function approximation. 
 

Determining the members of an ensemble is at least as important as 
deciding how the output should be combined.  Selecting from the best performing 
of several tested networks is generally recommended.   What is needed is a set of 
networks that generalises well and makes small errors. However, where errors are 
made, it is important that all the networks in the ensemble do not share them. 
This leads to the concept of diversity to eliminate error dependency.  
Randomising the initial network weights and varying the training patterns (boot-
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strapping by replacement) are two popular methods for creating diversity to 
improve reliability of the network.   

 
Apart from the general guidelines in network design and data selection, the 

optimal design and training procedure can only be achieved by testing for the 
actual problem and data at hand. In order to maintain full control of the data we 
adopt the common practice of using synthetic data in development and testing of 
geophysical methods.   

 
The synthetic data was created by varying only the matrix parameters 

keeping the fluid parameters constant to identify only the lithological variations 
and not the fluid effects. We generated 8 models with the reduction in contrast 
between the facies each time. So the model 1 has a first layer (sand) with log 
parameters as bρ =2.157, 96 6bt .∆ = , gamma ray = 20 and 0 34N .φ = , Rt = 2.97, a 
third layer (shale) with log parameters as bρ =2.63, 78 6bt .∆ = , gamma ray = 140 
and 0 09N .φ = , Rt = 4.47 and a second layer (shaly sand) with the log parameters 
in between the two. Considering the contrast between first and third layer in this 
model to be 100 % then in model 8 the contrast between first and third layer is 
reduced to 2.5% and half of it in between the first and the second and the second 
and third layer. The identification of lithofacies when log data has higher contrast 
was trivial but the challenge lies in the typical range of variations within a North 
Sea reservoir at Jurassic level (Brent Group). The underlying model is presented 
in Table 6. 1 and the five synthetic logs, which are commonly available from the 
wireline logging; i.e. density, sonic, gamma, resistivity and neutron porosity are 
shown in Figure 6.4 and Figure 6.5.  The small numerical separation between the 
facies is evident in the figures. From the statistical distributions of the log values, 
for each facies, shown in Figure 6.5 we see significant overlap but still there is 
reasonable separation between the cluster centres except for those of the gamma 
log.  From 3000 samples, at a nominal sampling distance of 10 cm, we have 
selected at regular intervals a number of samples for training patterns for the 
various tests. A typical selection of the training patterns is shown in Figure 6.4 
with 60 depth points for the entire log, or 20 patterns per logfacies. For testing the 
network performance we use all 3000 samples. 
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Figure 6.3: Architecture of MNN for predicting  K log-facies 
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Figure 6.4: Log values and training patterns for 3-layer model with 10% noise 
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Figure 6.5: Distribution of log values for 3-facies model with 10% noise 
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The latter implies that ensemble averaging may increase rather than reduce 
erroneous classification. Hence we used soft over-training approach to preserve a 
certain degree of variance in the output. The results shown in Figure 6.6 are based 
on a two-facies model with Facies 1 and 3 (Figure 6.4) using weakly over-trained 
neural networks. 
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Figure 6.6: Performance of BPANN for 2-class classification problem applied to 
a model consisting of two formations.  Hit rate versus number of (a) training 
patterns (b)number of neurons in the hidden layer 

 
Hit rates versus training patterns, for a range of thresholds as shown in 

Figure 6.6a reveal that a saturation level of 98-99% is attained for all thresholds 
when the number of facts approaches 100. However, if the common threshold of 
0.5 in a 2-class classification is applied, we achieve the same hit rate by 
employing less than 20 patterns, or 10 per facies.  Hit rates versus number of 
neurons in the hidden layer (Figure 6.6b), on the other hand, display a less 
monotonic behaviour and there is a clear indication of a maximum at 3-4 
neurons.  
 
6.4.2 Recurrent back propagation networks for      
classification 
 

 
Throughout the following exercises we apply the above results using 

networks with 4 hidden neurons and restricted to 20 patterns per facies.  Now, the 
remaining parameters to tune are those of the recurrent network  (Figure 6.1).  
Here the inputs to the RBPANN are the logs plus the lagged output from the 
BPANN.  The problem is to select the number of lagged predictions h  and the 
number of lagged logs x and we performed the exercise shown in Figure 6.7.  The 
bottom graph shows the hit rate versus error for the initial predictions by the 
BPANN with five input logs, four hidden units and one output (5-4-1). Notice 
that in this case we are aiming at predicting Facies 2 located between Facies 1 
and 3 (Figure 6.4 ) and with only 50% of the contrasts relative to the adjacent 
layers compared with that of the experiments shown in Figure 6.6.  The error 
histograms are given for two different bins; a coarse bin of 0.25 to illustrate the 
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overall features and a fine bin of 0.02 to reveal the details of the distribution.  In 
the fine-grain bin the two peaks at error 0 and 1 represent the absolute true and 
absolute false predictions, respectively. Whereas the peak around 0 contains 
about 85 % (2550) of the data, the peak at 1 contains only 7% (223). Using a 
threshold of 0.5 the overall hit rate is 90%. The aim is to eliminate the isolated 
error peak at 1, and to move the distribution of errors as close to zero as possible.  

 
   By introducing the recurrent back propagation network RBPANN of 

configuration 8-4-1 with inputs ( 1), ( ), ( 1)h z h z h z− +  from the BPANN and 
( )zx from the logs we increase the overall hit rate from 90 to 93%.  By further 

increasing the lag vector by adding the prediction ( 2)h z−  to the input layer, the 
overall hit rate of the resulting 9-4-1 RBPANN increased to 96%.  In the attempt 
to add the lagged logs ( 1)z−x , no improvement in the overall hit rate (95%) was 
achieved by the significant extra cost of using the 14-4-1 network. 

 
Results of testing the individual RBPANNs for the three logfacies (Figure 

6.4) are shown in Figure 6.8.   The outputs h  of the BPANNs are reasonably 
successful but with some scatter and misclassifications.  Further enhancement of 
the hit rate after employing the RBPANN is clearly seen, although a few points 
are still incorrectly positioned and need to be fixed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.7: Comparison of hit-rate for layer 2 versus error distribution for 
BPANN and RBPANN for various embedding dimension and input combination 
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Figure 6.8: Test of network performance on the 3-layer model:  (a) Output ( )h z  
from BPANN and (b) output ( )h z from RBPANN using nine inputs 
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then no overlap between the data used to train different networks and diversity 
thus guaranteed.  Shortage of data, on the other hand, may lead to reduced size of 
each data set and hence this may lead to deterioration in performance.  
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exercise.  Also in the case of real well logs sufficient data are normally available 

0 50 100 150 200 250 300

0.0

0.5

1.0

Depth (m)

0.0

0.5

1.0

Facies 3

Facies 2
0.0

0.5

1.0
BPANN

Facies 1

(a)
( )hz

Test BPANN 
Output from BPANN
Input to RBPANN

 

 

0 50 100 150 200 250 300

0.0

0.5

1.0

R-BPANN

Facies 2

Facies 1
Test data
Output R-BPANN

Depth (m)

0.0

0.5

1.0

 

 

0.0

0.5

1.0
Facies 3

(b)

( )h z

 



126                                                                                               Chapter 6. Lithofacies prediction  

  

to select disjoint sets. Logfacies may span a significant number of samples, or 
data may be selected from a number of different wells.  On the other hand, if 
shortage of data is the problem, a combination of bagging and disjoint sampling 
may be applied.    

 
A number M=9 disjoint training sets were created by sampling from the M 

next neighbour log samples (Figure 6.4), each containing 60 samples, or 20 per 
facies. The total training data thus consists of 540 patterns selected from a total of 
3000 points.  The M networks of the architecture Figure 6.1 were trained on the 
M disjoint data sets and redundantly combined into the committee machine Figure 
6.2, with one CM for each facies. The resulting mis-hit rate for each component 
network in the committee and the ensemble average, for each CM, can be 
appreciated in Figure 6.9.  Compared to the hit rate of individual component 
networks the ensemble classification is dramatically improved with mis-hit rates 
well below 1 %. The committee classification and the final output from the 
modular network (Figure 6.2) are shown in Figure 6.10.  Again, the RBPANN at 
the final output significantly enhances the performance except for a few points. 
From a mis-hit rate of 6-9 % by the initial BPANN we have by application of the 
recurrent network RBPANN and the use of the ensembles effectively reduced the 
mis-classification rate of the MNN to less than 0.1% (Table 6.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9: Distribution of miss-hits for the three committees CM1,CM2 and 
CM3 and their component networks for predicting the log-facies 
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Figure 6.10: Test of network performance on the 3-layer model for the output 
( )h z  (a) from the committee consisting of  9 experts and the final output ( )h z  (b) 

after application of  RBPANN 
 

6.5 Classification of logfacies in a multi-layer 
model with thin layers  

 
While still exploiting the synthetic data the idea here is to construct a 

multi-layer model based on the three log-facies, together with the corresponding 
set of networks already trained for their classification.  In particular we want to 
evaluate the performance of the recurrent networks on various layer thicknesses 
and contrasts.  A model consisting of 17 layers, with thicknesses varying from 3 
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model (Figure 6.4) into finer sections as shown in Figure 6.11. The networks 
trained on synthetic data were applied to the multilayer model. The classification 
of the layers by the CMs is shown in Figure 6.12a and the corresponding output 
from the MNN is shown in Figure 6.12b. Again, the three logfacies are well 
separated and correctly clustered with only a few mis-hits dominated, as 
expected, by the misclassification of the Facies 2  (0.5%).    

 
The summary in Table 6.2 confirms that fine layering is more of a 

challenge to the networks than the coarse layer model, with slightly more mis-hits 
for the 17-layer model than for the 3-layer model.   However, for any practical 
application the results for the multi-layer model are quite satisfactory.  We now 
apply the above techniques to real data. 
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Table 6.2: Mis-classifications (in % of 3000 samples) for the various 
classification steps for the 3-layer model (Figure 6.4) and the multi-layer model 
(Figure 6.11).  Number of mis-hits in parentheses. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.11: Synthetic logs for a multi-layer model (different colours denote 
different layers) 

 

 
 

Facies 
BPANN 
3-layer 

RBPANN 
3-layer 

CM 
3-layer 

MNN 
3-layer 

CM 
Multi layer 

MNN 
Multi 
layer 

Facies 1 5.73  (172) 4.93  (148) 0.07 (2) 0.0  (0) 0.26  (8) 0.30  (9) 
Facies 2 8.63 (259) 2.70  (81) 0.87 (26) 0.2  (7) 0.93  (28) 0.5  (15) 
Facies 3 5.90 (177) 1.00  (30) 0.2  (6) 0.03   (1) 0.2  (6) 0.13   (4) 
Total 6.74  (608) 2.89  (259) 0.38 (34) 0.09  (8) 0.46 (42) 0.31  (28) 

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

2 .3 8
2 .4 0
2 .4 2

ρ

D e p th  ( m )

8 6

8 7∆ t

9 5

1 0 0

1 0 5
γ

3 .2

3 .3

3 .4

R t

0 .2 0

0 .2 2
φ N



Chapter 6. Lithofacies prediction                                                                                  129 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12: Predictions for the 17-layer model (a)output from the CMs (b) 
consecutive application of the RBPANN on CM output 
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6.6 Real data 
 

We consider the Ness Formation of the Oseberg Field in the North Sea, 
confined to the stratigraphic interval between the Tarbert and the Etive-Rannoch 
formations of the Brent group (Figure 6.13). It is characterised by a relatively low 
proportion of good quality reservoir rocks. It is much more heterogeneous than 
the Oseberg formation and comprises sandstones, mudrocks and coal beds 
accumulated in deltaic plain or coastal plain environments. Fluvial channel 
sandstones of variable thicknesses and orientations and having laterally restricted 
geometries make up the reservoir geology. The formation is interpreted to reflect 
deposition within a fluvio-lacustrine, upper delta plain environment where the 
fluvial channel systems represent the main conduits for sediment transport and 
deposition (Ryseth, 1989). The distinction between reservoir and nonreservoir 
lithologies grouped the formation into two main facies assemblages. Various 
types of fluvial channel sandstones are contained within assemblage 1 (channel 
fill) and the surrounding delta plain deposits including coal beds, lake, levee and 
crevasse deposits are grouped into assemblage 2 (flood plain). 

 
Studies of the alluvial architecture of the Ness Formation (Ryseth et al., 

1998) have shown that the stacking density of channel sandstones varies with the 
stratigraphic level; i.e. with relatively thick and laterally persistent bodies near 
the base of the formation.  Above this lower fluvial reservoir, the remaining 
lower Ness is dominated by coal-bearing floodplain deposits with isolated fluvial 
sandstone bodies of both simple and multi-storey character.  In the upper part of 
the Ness Formation, numerous fluvial, multi-storey sandstone bodies interfinger 
with contemporary floodplain deposits, and the whole succession culminates in a 
coal-bearing unit underlying the Tarbert Formation. 

 
The four main lithofacies within the formation identified by geologists on 

the cores:  (1) channel sands, (2) crevasses, (3) lake and (4) coals have detectable 
differences in the log response.  Facies (1) is relatively clean poorly to well-
sorted sand characterised by low values of gamma, density and velocity, the 
resistivity and neutron porosity are more variable, depending on the type of pore 
fluid.  Average porosity and permeability of the channel sands are 26% and 1700 
mD, respectively. Thickness of the channel deposits varies in the range 2-25 m 
with a maximum in the frequency distribution around 5 m.  

 
Facies (2) is a material consisting of fine-grained sand inter-bedded with 

clay-rich material.  The log responses of the crevasse are more variable than in 
the channel sands, depending on the clay content and pore fluid. In general, 
however, the log readings lie between those of the channel sands and the shaley 
lake facies but with considerable overlap (Figure 6.14). The reservoir quality of 
the crevasses is less favourable and the transition between the adjacent sand 
channels and the floodplain lakes are gradual in properties.  Studies on the 
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thickness distribution in the area are not available, but the wells included in this 
study indicate a layer thickness in the range 2-10 m. 

 
The floodplain lake (3) is the dominating facies within the Ness Formation 

as seen from Figure 6.13 and Figure 6.15.  The log characteristics are those of 
Jurassic mudrocks; i.e. high gamma, density and velocity, and generally low 
resistivity. 

 
Coal layers (4) are in general characterised by low density and sonic 

velocity with distinct peak at high values of the neutron porosity. However, some 
of the coal streaks apparent from the cores contain mixtures of other material and 
hence have a different response in the log readings as apparent from the wide 
range log values picked from layers nominally interpreted to be coal.  The 
implications of the latter are evident in lower section of Figure 6.13 where 
distinct coal beds around 2675 m are not detected by the logs. Most of the coal 
beds occur in the lower half of the Ness Formation and also in the thin topmost 
part. 
 

The distribution of log values for the four lithofacies within the Ness 
formation is shown in Figure 6.14. Gamma ray and density logs are the most 
significant in lithofacies identification.  In gamma ray the cluster centres for 
channel sand, crevasse and lake are well separated, while those for coal and 
crevasses are overlapping.  The latter is remedied by the density and sonic where 
the cluster centres for coal and crevasses are located in opposite ends of the 
range.   In addition the response to coal is also quite distinct in neutron porosity 
where its cluster centre appears fairly isolated in the upper porosity range.  In 
general, however, the log responses to coal covers a wide range of values, 
supporting our worries that layers which, by visual inspection are interpreted as 
coal, may be contaminated by other rock components. Except for the high-
porosity channel sands where the resistivity is a strong function of the pore fluid 
type, the other facies are clustered in the lower end of the resistivity scale. For the 
water filled sands the resistivity cluster is at the lower end, while for the 
hydrocarbon bearing sand clustering is confined to the high-resistivity range. 
 

A comparison between zonation based on the neural networks and cores 
for four wells is shown in Figure 6.15, and the classification performance is 
summarised in Table 6.3.  Training patterns are mainly extracted from well 30/6-
C-12, while the other three wells are essentially unknown to the network.  
Therefore, the mis-hits for the training well 30/6-C-12 are at minimum  (4.7%) 
whereas a maximum of 10 % occurs in one of the unknown test wells 30/9-B-21.  
Facies-wise the maximum average mis-hits of 13.6 % occur for lake whereas the 
smallest average mis-hit rates are for the coal and crevasse of 2.8 and 3.0 %, 
respectively. 

 
The network was capable of identifying all four lithofacies although there 

was overlapping between clusters. The network fails to identify thin lithofacies 
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less than 0.5 m thick, for example it missed the crevasse in well 30/9-B-21 at a 
depth of 2625m. The reason is there are only 4 samples within an interval of 0.1m 
from this facies i.e. the thickness of the facies is about 0.4 m, so the logging tools 
(for example resistivity, gamma ray and neutron porosity) cannot obtain an actual 
response from this bed and were more affected by the side beds that is the 
channel sand above and below this facies. The network has a limitation at few 
depths in identifying the correct boundaries of the facies also for example in well 
30/9-B-21 (at 2667m), and in well 30/9-1 (at 2724m), because the log response is 
not unique at the boundaries. The reason is that different tools have different 
resolution, resulting in formation property averages representing different 
formation volumes. The network missed to identify coal layers in well 30/9-1 at a 
depth of 2703m and the reason is that the lithofacies identification from cores are 
done by visual inspection but at this depth there was not a coal response in the 
logs that is the unique feature of coal with low density, high resistivity and high 
neutron porosity.  For this reason coal was misinterpreted to be a crevasse in well 
30/9-B-21 at a depth of 2638m. Due to the overlapping clusters of crevasse and 
lake the network misinterpreted a lake to be a crevasse at the depth of 2708m in 
well 30/9-1.   But overall the network identified the four lithofacies with an error 
of less than 10% in the four wells, which is significant. 

 
It is of interest to compare the performance of our classification of real 

lithofacies with those of similar studies published in the current literature.  Based 
on discriminant factor analysis Busch et al. (1987) classified 7 facies with an 
overall mis-hit rate of 25%.  Using a similar technique Jian et al. (1994) classified 
8 facies with an overall miss-hit rate of 23%.  In the comparative study of Wong 
et al. (1995) 4 facies were classified with the same miss-hit rate of only 5% both 
for discriminant factor analysis and the neural network approach.  Using a 
recurrent neural network Yang et al. (1996) obtained an overall mis-hit rate for 6 
carbonate facies of 17%, whereas the mis-hit rate using conventional clustering 
analysis exceeded 40% for the same data set.  By a hybrid neural network and 
expert system approach Chang et al. (2000) identified 4 facies with a mis-hit rate 
of 13%. 
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Figure 6.13: Detailed comparison of logfacies from present study (left) and 
lithofacies (right) after Ryseth et al. (1998). 
 

Coal

Crevasse

Lake

Channel

 
2680

2660

2640

2620

50100

 

 
γ  (API)

TV
D

 (m
)

2.0 2.5

Net

30/9-2ρ (g/cm3)



134                                                                                               Chapter 6. Lithofacies prediction  

  

.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.14: Distribution of log values for the four facies within the Ness 
formation of the well 30/6-C-12. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.3: Performance of the MNN as mis-classification rates for the four facies 
of the Ness Formation (in  % of total samples used).  
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Figure 6.15: Comparison of log facies from the neural nets with the manual
zonation based on cores. 
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6.7 Conclusions 
 
 

In this study we have combined modern neural network techniques in an 
attempt to improve generalisation of the BPANN approach for objective 
numerical clustering and identification of facies from well logs. The method 
which is based on combining back-propagation neural networks in ensembles and 
modular systems, where the multi-class classification problem of facies 
identification has effectively been reduced to a number of two-class problems is 
very effective in pattern classification.  The basic property of the facies that it 
consists of several sequential points along the well bore has been exploited using 
a recurrent BPANN adopted from time-series analysis. Ensembles of neural 
networks trained on disjoint sets of patterns using a soft over-training approach 
are essential components of the technique to ensure diversity and improve 
generalisation of the stack.  We have optimised the individual building blocks of 
a modular system by using synthetic logs and applied the networks to facies 
zonation of the Ness Formation of the Brent Group in a selection of North Sea 
wells.  

 
By using synthetic logs from a realistic model with small layer contrast 

and moderate noise level we find an excellent classification performance of 
slightly less than 100 % hit-rates. By introduction of fine-layering in the model 
we have shown that the performance is only slightly reduced, demonstrating 
excellent performance of the RBPANN for layer enhancement, also in case of 
thin layers.  

 
Classification from real data is more challenging since the facies in the 

present study were initially defined by visual inspection of cores, and thus not 
fully compatible with the readings of the logging tools which detect different 
physical properties and with coarser spatial sampling.   Application to the four 
facies of the Ness Formation reveals an average hit-rate well above 90% in wells 
unknown to the network.  Compared with similar classification studies published 
our results reveal slightly to significantly better performance. 
 

 
 



137 

 
 

 
Chapter 7  
Application of neural networks on 
measurement while drilling (MWD) logs 
 

7.1 Introduction 
 
Reservoir characterization while drilling is very important, as there are 

several decisions to be taken immediately while drilling without delaying rig 
time. So in this situation having a complete information of reservoir properties 
will ease the process of decision-making. In this chapter we have utilised our 
prior experiences of training networks for porosity, permeability and partial fluid 
saturation with wireline data and then generated networks based on MWD data, 
which can be used in real time. 

 
For economical and technical reasons cores are normally not collected in 

highly deviated and horizontal wells.  Cores for calibrating the petrophysical 
analysis of MWD data are thus not commonly available.  On the other hand, a 
pilot well is often drilled where both wireline and MWD data have been acquired, 
allowing for a calibration of the MWD networks based on the formation 
properties established from the wireline data and calibrated neural nets for the 
actual field.   In this study the patterns for training the MWD networks for 
porosity and permeability are based on the networks established for wireline data 
by Helle et al. (2001). 

 
The neural networks for porosity, permeability, fluid identification and 

partial saturation using MWD logs have been trained and tested on data mainly 
from the Oseberg field in the North Sea and are shown to be sufficiently accurate 
to satisfy most practical needs.  A major advantage is that the neural network 
approach requires no a priori knowledge of the grain material and pore fluid, and 
thus can be applied during drilling without prior petrophysical evaluation. Once 
the networks have been established the application requires a minimum of 
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computing time. However, the main drawback of the method is the amount of 
effort required to select a representative collection of training facts, which is 
common to most models relying on real data, and the time needed to train and 
test the network.  

 

7.2 Sources of error in the data 
 

 
While training MWD networks we use MWD, wireline and core data. 

Thus apart from the differences between core and log data as discussed before 
there are differences in MWD and wireline measurements also which may induce 
errors in porosity, permeability and water saturation prediction by neural network 
while using MWD networks. For example: 

 
There is a difference in the environment during wireline logging and 

MWD. MWD is recorded while drilling therefore either mud filtrate invasion has 
not taken place or it is very less.  Therefore the MWD logs read mainly the 
properties of uninvaded formation, whereas it is hard to eliminate the invasion 
effect during wireline logging even after environmental corrections.  

 
The wireline and the MWD data may have same or different horizontal 

and vertical resolution depending upon the source receiver spacing and the 
frequency of the tool.  

  
The horizontal depth of investigation is different for wireline and MWD 

data.  The wireline data is recorded with low frequency therefore the signal has a 
greater depth of investigation.  The MWD data is recorded with a high frequency 
signal therefore the tool measures closer to borehole. 

 
The mechanical differences between the wireline and MWD density tools 

are significant.  The MWD system uses a full gauge stabiliser for mud exclusion, 
which is completely effective only in smooth gauge holes whereas the wireline 
tools are padded and can make good contact with the borehole wall.  Thus the 
MWD tools measure an average density around the borehole as opposed to the 
single track that the wireline system measures.  These effects introduce important 
differences in the two measurements.  

 
The effect of well bore condition on MWD neutron porosity measurement 

generally is greater than on a wireline compensated neutron log porosity 
measurement. This greater borehole dependence is because the MWD neutron 
porosity tool is nominally centered while the wireline tool is eccentric in the 
borehole. 
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7.3 Porosity prediction 
 
 

Commonly neural networks are used to predict petrophysical properties by 
calibrating log data with respect to core data, as the cores have the measured 
values of the properties and the logs contain its geophysical information. But 
cores are rarely collected in horizontal wells. In this study we devised a technique 
of predicting porosity and permeability using MWD logs in horizontal and highly 
deviated wells. The calibration of the MWD networks rely on the formation 
properties established from the wireline data and the calibrated neural nets for the 
actual field. Thus training patterns for the MWD network are the output from 
wireline network of (Helle et al., 2001) in wells where both MWD and wireline 
data were acquired. This network uses density, resistivity and sonic logs in its 
input layer and the majority of the porosity values are based on grain density 
laboratory measurements and bulk density from wireline data (Lucas, 1998) 
which were carefully selected to obtain a range of values appropriate for most 
sediments in the Viking Graben  (Bhatt, 1998) for use in a basin-scale fluid flow 
analysis. This network has been discussed in section 3.6 of the report.  

   
 The network for predicting porosity using MWD data consists of 3 input 
neurons corresponding to the density, neutron porosity and resistivity logs, 10 
neurons in the hidden layer and one output neuron (Figure 2.4). In MWD 
networks we used neutron porosity logs in the absence of sonic logs as used in 
wireline networks. The optimal architecture of the network is designed using 
synthetic data as discussed in section 3.3. The training patterns were selected 
from water and hydrocarbon bearing intervals of the reservoir and as well as 
nonreservoir sections. The selected training patterns cover the porosity range 
from 0.02-0.32. We trained K =20 redundant networks with the same input data, 
but with randomised initial weights. Out of those 20 networks we selected 9 
networks based on the 'select and test approach' of Sharkey et al. 2001. The 
slightly different outputs from these networks are then combined using the 
ensemble average and OLC approach.  
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Figure 7.1: a) Comparison of porosity prediction using MWD and core data in 
well 30/9-14, b) error distribution. 
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The comparison of the porosity predicted by MWD network and core 
porosity in well 30/9-14 is shown in Figure 7.1a.  The network gives good results. 
The difference between the core measured He porosity and the network predicted 
porosity gives a mean error of 0.009 and a standard deviation of 0.02 which is 
certainly low error. The results are comparable with the porosity predicted by 
wireline network using CM approach as shown in Figure 3.13 and 3.14 which is 
quite good because normally the results on MWD data are poorer than that of 
wireline data. The reason is that the log quality of MWD logs is not as good as 
that of wireline logs as they are more exposed to noise while drilling. The errors 
are now mainly due to the combination of different measuring techniques such as 
cores, wireline and MWD measurements.   

7.4 Permeability prediction 
 
In the absence of a sonic log the MWD permeability network has only 3 

neurons in the input layer corresponding to density, neutron porosity and gamma 
ray logs unlike the wireline network (discussed in section 4.6), which consisted 
of 4 neurons in the input layer. Based on the experience from permeability 
synthetic data discussed in section 4.3, the optimal architecture of the network is 
3 neurons in the input layer, 10 neurons in the hidden layer and 1 neuron in the 
output layer. The training patterns cover a logarithmic permeability range of 
micro Darcy to about 7 Darcy (-6.6 to 3.82 in logarithmic scale).  As for the 
porosity network, the patterns for training the MWD networks are based on the 
predicted values established from the single network for wireline data by Helle et 
al. (2001).  

 
The problems and errors involved in combining air permeability data at 

room conditions with log measurements at down hole conditions as discussed 
before in section 4.2 hold for this network also. Another problem with the 
permeability is its wide range of variation; i.e. by a few orders of magnitude 
within the reservoir.  In order to improve the resolution of the network we split 
the range into several (N=3) sub-ranges. We train (K=9) networks for each sub 
range and combine them by simple averaging, so that we now get  N=3 experts 
for the three ranges of permeability. A gating network that can predict 
approximate values, in turn, will trigger the output from the appropriate expert 
where the individual experts are trained to accurately predict within a specified 
range. The architecture of permeability CM is shown in Figure 4.6. A comparison 
of permeability predicted by wireline network, MWD network and core measured 
permeabilities is shown in Figure 7.2. The difference between the logarithm of 
core permeability and the predicted permeability gives a mean error of 0.27 and a 
standard deviation of 0.33. The results obtained after testing MWD CM on real 
data in well 30/6-C-15 (Figure 7.2a) are comparable with the results from 
wireline CM as shown in 4.13 and 4.14.  The errors are low enough and are 
mainly due to the differences in the spatial resolution, measurement conditions of 
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log and core data and the different types of fluid permeabilities measured by log 
and core data and due to the difference in MWD and wireline logs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: a) Comparison of permeability prediction using MWD, 
wireline(WL) and core data in well 30/6-C-15, b) error distribution. 
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7.5 Water saturation prediction 
 
 

Based on the experience from synthetic data of partial fluid saturation 
prediction the basic architecture of individual network for predicting water 
saturation is as shown in Figure 2.4. It consists of 3 neurons in the input layer 
corresponding to density, neutron porosity and resistivity logs, 4 neurons in the 
hidden layer and 1 neuron in the output layer. The patterns are the water 
saturation values from CPI logs. The water saturation values in the CPI logs are 
based on the individual interpretation of a petrophysicist using the Indonesian 
equation (5.8) (Poupon et al.,1971). A CM approach has been applied for 
predicting water saturation using MWD logs. We trained (K =9) experts and their 
output has been combined by the OLC method reducing the variance and the bias 
from the individual networks. The architecture of CM is as shown in Figure 3.11. 

 
The MWD network trained by OLC method has been tested on several 

wells, Figure 7.3a shows a comparison between the water saturation predicted by 
the MWD network using the OLC approach and the corresponding Sw values 
from CPI logs in well 30/9-B-6. There are 7000 data points on which the 
prediction has been made. The data from this well is unknown to the network 
while training. There is an oil water contact (OWC) in this well at a depth of 
around 5880m and a transition zone from oil to water of around 20m thickness. 
As shown in Figure 7.3b the difference between the Sw values predicted by neural 
network and those from CPI logs give a mean error of 0.03 and a standard 
deviation of 0.03. Thus, as shown in Figure 7.3.c, there is an underprediction of 
Sw values in comparison with CPI data, the reason being that in the training 
dataset the Sw values are about 2-3 saturation units lower for the combination of 
logs corresponding to this well. Moreover, even by experienced petrophysicists it 
is not trivial to quantify exactly the Sw values because of the uncertainity in log 
data and the saturation parameters. Thus we believe that in view of the existing 
uncertainities the prediction of  Sw by neural network is good. As shown in Figure 
7.3c there is a good correlation between the Sw predicted by neural network and 
the one from CPI logs, in spite of the underprediction.   
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Figure 7. 3: a) Comparison of  Sw by OLC approach and Sw from CPI logs in well 
30/9-B-6, b) error distribution, c) cross plot of Sw from OLC approach and Sw 
from CPI logs. 

5000 5200 5400 5600 5800 6000

0.0

0.2

0.4

0.6

0.8

1.0

(a)

 

 

Sw

Depth(m RKB)

 Sw (CPI)
 Sw (OLC)

-0.2 -0.1 0.0 0.1
0

500

1000

1500

2000

(b)

C
ou

nt
s

 

 

 

Sw ( OLC ) - Sw ( CPI )

Mean=-0.03,
σ = 0.03,
N=7189

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c)

 

 

 

 
S w

 (O
LC

)

Sw (CPI)

R=0.9, Slope=0.8



Chapter7. Application of neural networks on  MWD logs                                          145                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4: Normalised relative permeability logs of well 30/9-B-6. 

7.6 Conclusions 
 
The parallel architecture of the neural network in the committee machine 

approach combined with optimal linear combination and gating networks, 
significantly enhances the power of the neural network techniques for application 
in petroleum geoscience.  With this approach prediction of porosity, permeability 
and water saturation from MWD data is feasible and thus can be made while 
drilling. The standard deviation errors in predicting porosity, permeability and 
water saturation from MWD data are of the same order as for wireline logs. As 
for wireline networks it is also important to consider the behavior of MWD 
networks in different well and formation fluids.  A comparison of net to gross 
predictions by porosity and/or permeability networks with the net to gross results 
from standard CPI evaluations will represent a useful enhancement of the present 
study. 
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Chapter 8 
Conclusions and future work 
 

 
From the present study we have concluded that the neural network 

approach for predicting reservoir properties has many advantages over the 
conventional methods including semi-analytical expressions and empirical 
formulas based on linear regression method.  The neural network provides a 
pragmatic solution to the problem of converting well logs to reservoir properties. 
The main drawback is the effort required in selecting representative training data 
that, on the other hand, is a common problem for all modelling methods relying 
upon real data.  A committee machine is the best option for predicting reservoir 
properties from well logs because the optimisation of the network has no unique 
solution so minimising the error by a number of redundant networks is one of the 
solutions.  The committee machine having modular neural networks is also 
beneficial because then the main task is distributed among a number of various 
small tasks and thus the accuracy in the results is maintained by keeping the 
architecture simple. The predictions made by neural networks on a test well will 
sometimes be too high or too low, the reason being that the network has not been 
exposed to this data during training. 
 

However it is important to design the optimum architecture of the network 
regarding the number of hidden neurons.  The accuracy of the network is less 
sensitive to the number of training samples.  In most cases, the more patterns the 
better will be the accuracy. However a representative training data is essential for 
the network to approximate the function with sufficient accuracy.  But the 
network is much more sensitive to the number of hidden neurons.  With fewer 
neurons the network may not be capable of approximating the function fully 
while the larger number of them will make the network memorise the training 
data and therefore the network will generalise poorly.  Selection of a proper 
training algorithm is also important in order to achieve the minimum error in 
reduced time.  The Levenberg-Marquardt back-propagation algorithm has proven 
excellent performance in all applications in this study. 
 

It is essential to preprocess the log data to form a good training dataset.  
Pre-processing may include depth shifting the cores to match log data and also 
depth shifting different log curves so that each curve reads the same formation 
interval.  The core and the log data should represent similar reservoir conditions.  
Log data is always collected at in situ conditions while core data normally is 
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obtained at laboratory condition.  Therefore, it is necessary to bring the core data 
also to be at in situ conditions by applying overburden corrections on the 
samples.  It is important to use high resolution log data in order to match the 
resolution of core data otherwise the curves generated by neural network are 
much smoother than the core data.  In lithofacies prediction also high-resolution 
log data is crucial in identifying all the thin facies, which can be seen on core data 
but hard to see on logs. 
 

For the porosity neural network with three inputs, i.e. sonic, density, 
resistivity, the optimal number of hidden neurons has been determined to be in 
the range 6-10, with a sufficient number of training patterns of about 150.  The 
network is sensitive to the fluid property.  The unconstrained OLC approach of 
Hashem (1996), with zero intercept term based on least squares, is the most 
suitable ensemble approach for the porosity CM and the accuracy is mainly 
limited by the accuracy of the training patterns and the accuracy of the log data 
themselves. 
 

Due to the dynamic range of permeability, varying from 0.1mDarcy to 
several Darcies within a reservoir section we find that splitting the whole range 
into a number of sub ranges increases the resolution and accuracy.  Also due to 
the large dynamic range we normalised the logarithmic permeability values in 
order to bring the permeability values within the range of activation function.  
With the four inputs; i.e. sonic, density, gamma, neutron porosity, we find that 
optimal number of hidden units of the permeability neural network is confined to 
the range 8-12 where the variance and bias are at their minima.  In general, the 
errors steadily decrease with the number of training facts.  A practical lower limit 
has been set to 300, or twice the size of the training set required for the porosity 
network due to the increased complexity of the background relationships with the 
log readings.  The networks should be trained by validation approach and the 
output should be combined by simple ensemble averaging instead of the OLC 
approach, which further enhances the noise in this case. 
 

For predicting the fluids water, oil and gas, and their partial saturation the 
inputs are density, sonic, resistivity and neutron porosity logs.  The output of 
three saturations i.e. oil, water and gas saturations from a single MLP (4-10-3) 
reveals the same accuracy as those of three individual MLPs with one output (4-
4-1), the latter has the advantage of simplicity in terms of number of neurons, 
fewer training patterns and faster training.  The optimal number of training 
patterns should be in excess of 100 to ensure negligible errors in case of data with 
moderate noise.  A committee neural network for each fluid type is the preferred 
solution, with each network consisting of a number of individually trained MLPs 
connected in parallel and redundantly combined using OLC approach.  
 

The problem of identification of lithofacies is solved by reducing the 
multiclass classification problem to a two-class classification problem using the 
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modular neural network system.  The CM architecture is based on combining 
BPANN with a recurrent BPANN. Ensembles of neural networks are trained on 
disjoint sets of patterns using a soft overtraining approach for ensuring diversity 
and improving the generalisation ability of the stack. 
 

It is important to check the sensitivity of the networks to different borehole 
fluids (water based or oil based mud) since the logging tools are sensitive to the 
mud properties.  This could be one of the scopes for future studies.  Also, 
comparing the net to gross results from porosity and/or permeability predictions, 
and comparing them with net to gross results from standard petrophysical 
interpretations may constitute a further enhancement of the present study. 

 
While identifying lithofacies by neural network the facies thickness should 

be greater than a depth sample to be resolved and identified as a facies.  In the 
present study we trained porosity, permeability and fluid saturation networks 
from log data using patterns from core data.  In this approach we have taken the 
reservoir as a whole assuming that the influence of lithofacies architecture on 
reservoir properties and flow performance is embedded in log data. This 
approach is called non-genetic approach.  In the genetic approach the reservoir is 
subdivided into flow units defined as a volume of rock subdivided according to 
geological and petrophysical properties that influence the flow of fluid through it 
and then each flow unit is characterised separately.  Thus in this approach the 
genetic flow units are firstly identified and then the reservoir properties are 
predicted.  Recent studies linking the genetic approach to reservoir engineering 
have shown that reservoir performance is more sensitive to lithofacies 
architecture than to details of petrophysical properties.  In future work we may 
try the genetic approach, which emphasises the lithofacies prediction, or 
identification of flow units, rather than variation in petrophysical properties.  This 
approach may help to characterise the inter-well region by mapping lithofacies 
from area to area.  In future lithofacies identification can also be done in two 
steps.  The first step can be identifying the clusters within the log data using an 
unsupervised network.  In the second step a supervised network can be trained for 
labelling the clusters.  The ambiguities due to overlapping of the facies can be 
resolved by employing recurrent back propagation networks.  The ambiguities in 
the sequence of lithofacies can be avoided by providing a priori knowledge on the 
local stratigraphy to the gating network.   
 

In future we plan to use seismic and log data for prediction of rock 
properties by using neural networks.  Seismic inversion is an attempt to predict 
rock properties e.g. porosity, sand thickness, fluid content, hydrocarbon 
saturation etc. from seismic data.  Under the most favourable conditions the 
seismic method is restricted to the estimation of only four rock physics 
parameters; i.e. P- and S-wave velocity, density and anisotropy.  When inverting 
seismic data for rock properties such as e.g. porosity, we implicit assume a 
relationship between the property and one or more of the fundamental seismic 
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parameters.  The goal of attribute inversion is to visualise seismic patterns 
pertaining to a specific geologic interval.  Inversion requires some form of 
constraint and need to be calibrated by tying the result to real or simulated well 
data.  An unsupervised neural network can be used to perform this task by 
clustering seismic waveforms around a mapped horizon.  Input to the neural 
network can be a set of seismic amplitudes.  The number of clusters and the time 
gate relative to the mapped horizon can be defined by user.  Each cluster is 
characterised by a waveform shaped class centre.  The network firstly learns how 
to classify the seismic waveforms.  This training is done on a representative 
selection of seismic waveforms. In unsupervised approach the aim is to find 
structure in the data themselves without imposing a priori conclusion.  
Unsupervised learning can be used for data clustering.  Popular networks that use 
unsupervised learning are Kohonen feature maps (Kohonen, 1989).  However, as 
we know the supervised approach requires a representative training data set.  To 
validate the inversion method the network can be applied to the well data. 
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