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Introduction

Introduction

The Singular Spectral Analysis (SSA) method is a particular way to
apply the Singular Value Decomposition (SVD) method in a single (or
multivariate) time series;

The SSA method in an iterative and recursive way to estimate
individual components of the signal. Applying the short time
autoregressive method to obtain a time-frequency representation of
the signal;

For the computing of the instantaneous frequency we provide a new
equation which depend on a single autoregressive coefficient;

The effectiveness of the new approach is demonstrated in a synthetic
data example and in the removal of ground-roll noise from land
seismic data.
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Singular Spectrum Analysis - SSA

Singular Spectrum Analysis

Let the vector d = [d(0), . . . , d(N)]T represent single-trace data, and,
let D be the Toeplitz matrix with the data shifted by one time sample
in each column. τ represents the variable associated with the time
shift, τ = 0, . . . , M . The matrix D has dimensions,
(M +N + 1)× (M + 1), and

DT =

 d(0) . . . d(N) OM
. . . . . . . . .

OM d(0) . . . d(N)

 .
Where OM represent a triangle of null coefficients. The matrix DT is
an extension of the so-called trajectory matrix which is used in SSA.
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Singular Spectrum Analysis - SSA

We have D = [E0d . . . EMd] = [d̄0 . . . d̄M ], where Ek is a
(N +M + 1)× (M + 1) shifting matrix:

Ek =

 0k
IN+1
0M−k

 ,
IN+1 is the identity matrix of order N + 1. 0k and 0M−k represent
matrices with null coefficients and dimensions k × (N + 1) and
(M − k)× (N + 1), respectively, such

dk = Ekd =

 0k
d

0M−k

 .
0k and 0M−k represent the vectors with k and M −k null coefficients,

respectively. The signal can be expressed as d = 1
M+1

M∑
k=0

ETk dk.
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Singular Spectrum Analysis - SSA

The reduced SVD

The reduced SVD of the matrix D is

D = UΣVT =
M∑
τ=0

στuτvTτ =
M∑
τ=0

D̃τ ,

where D̃τ = στuτvTτ represents the eigenimage of index τ of the data
matrix D. Then the eigenvalue decomposition of the data covariance
matrix is

DTD = VΣ2VT .

The eigenvalues are σ2
τ , and the eigenvectors are vτ .
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Singular Spectrum Analysis - SSA

For a given eigenimage, D̃τ , we can apply the matrix Ek and restore a
transformed data component

d̃τ = στ

M∑
k=0

vτ (k)ETk uτ .

That is, the left singular vector uτ is cut, shifted and added to the
result with a weight στvτ (k). The previous equation can be expressed
by

d̃τ = στVTτ uτ

where VTτ is a (N + 1)× (M +N + 1) banded Toeplitz matrix.
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Singular Spectrum Analysis - SSA

The banded Toeplitz matrix given by

VTτ =

 vτ (0) . . . vτ (M) ON
. . . . . . . . .

ON vτ (0) . . . vτ (M)

 .

It may be shown that: I = 1
M+1

M∑
τ=0

(VTτ Vτ ) .

Where VTτ Vτ is a symmetric Toeplitz matrix of dimension
(N + 1)× (N + 1), formed by the autocorrelations coefficients, of the
eigenvector vτ . By multiplying I by d we obtain:

d = 1
M + 1

M∑
τ=0

(VTτ Vτ )d = 1
M + 1

M∑
τ=0

d̃τ where d̃τ = VTτ Vτ d .
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Singular Spectrum Analysis - SSA

The data vector d may be decomposed in terms of the eigentraces d̃τ .

From equation:

d̃τ = VT
τ Vτ d

We see that the output trace of the eigenimage number τ is the
convolution of the data vector d with the autocorrelation of the
eigenvector vτ .

Since the autocorrelation is zero phase, the phase of the output trace
is equal to the phase of the data trace.
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Iterative and recursive signal decomposition via SSA

Iterative and recursive signal decomposition via SSA

We use the SSA method to iteratively decompose a signal into high
and low energy components using a three-loop algorithm.

In the inner loop we compute a high-energy component of the signal
by recursions in the number of rows in the trajectory matrix using
only the first right singular vector, corresponding to the component
with highest energy.

The result is subtracted from the input signal in the second loop and
the process is repeated. This gives an estimate of the low-energy part
of the signal.

In the outer loop this low-energy signal is subtracted from the input
signal and the result is output as one signal component.

The whole procedure is then repeated with the low-energy component
as the new input signal.
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Iterative and recursive signal decomposition via SSA

Algorithm to iterative and recursive signal decomposition via
SSA

Signal analysis and time-frequency representation

where,

d̃τ = VT
τ Vτ d . (11)

The data vector d may be decomposed in terms of the eigen-
traces d̃τ . From equation (11) we see that the output trace of
the eigenimage number τ is the convolution of the data vec-
tor d with the autocorrelation of the eigenvector vτ . Since the
autocorrelation is zero phase, the phase of the output trace is
equal to the phase of the data trace.

Iterative and recursive signal decomposition via SSA

We use the SSA method to iteratively decompose a signal into
high and low energy components using a three-loop algorithm.
In the inner loop we compute a high-energy component of the
signal by recursions in the number of rows in the trajectory
matrix using only the first right singular vector, corresponding
to the component with highest energy. The result is subtracted
from the input signal in the second loop and the process is re-
peated. This gives an estimate of the low-energy part of the
signal. In the outer loop this low-energy signal is subtracted
from the input signal and the result is output as one signal
component. The whole procedure is then repeated with the
low-energy component as the new input signal. The procedure
is started with the data trace as input, and it is repeated until K
signal components have been estimated.

The following pseudo-code illustrates the process:

Initial vector
d1 = d
DO k = 1, . . . ,K ( Components )

M = max{1, K− k+1}
d̂0 = dk
DO j = 1, . . . ,J ( Iterations )

d̃0 = d̂ j−1
DO τ = 1, . . . ,M ( Recursion in order M )
• Form the matrix Dτ = [ d0 . . .dτ ] from d̃τ−1
• Compute the first right singular vector v0
(of dimension (τ +1)×1)
• Compute the auto-correlation of v0,
rτ = (1,rτ (1), . . . ,rτ (τ))T

• Compute the update d̃τ = VT
τ Vτ d̃τ−1

(equation (11))
ENDDO
d̂ j = d̂ j−1− d̃M

ENDDO
Output xk = dk− d̂J
dk+1 = d̂J

ENDDO

We note that all vectors dk, d̂k and d̃k are of dimension
(N +1)×1. The first right singular vector v0 is of dimension
(τ + 1)× 1, and it can be computed using the power method
(Golub and van Loan, 1996).

We have the signal decomposition

d =

K∑

k=1

xk +dK+1

The number of components K is subject to interpretation, but
normally the residual dK+1, the output of the last recursion,
becomes small.

Time-frequency representation using AR coefficients

From each estimated signal component x(t) we form the ana-
lytic signal

z(t) = x(t)+ iy(t) (12)

where y(t) is the Hilbert transform of x(t). For a data window
{z(t−L∆t), . . . ,z(t), . . . ,z(t+L∆t)} (∆t is the sample interval)
we define the instantaneous auto-correlation,

Rt(τ) = wt(τ)⊕w∗t (τ) = At(τ)eiφt (τ) (13)

where wt(τ)= {1,c(t),c(t)2, . . . ,c(t)∞} is the minimum-phase
wavelet corresponding to the inverse of the prediction error
operator of order 1, {1,−c(t)}, ⊕ represents correlation and
∗ represents complex conjugate. The coefficient c(t) may be
computed by using the Burg algorithm (Burg, 1975). We re-
mark that |c(t)|< 1. It may be shown that,

Rt(τ) = Rt(0)wt(τ), τ ≥ 0 (14)

where Rt(0) = 1/(1−c(t)c∗(t)). The normalized derivative of
eq. (13) gives,

R′t(τ)
Rt(τ)

=
A′t(τ)
At(τ)

+ iφ ′t (τ) (15)

where,

φ ′t (0) =
dφt(τ)

dτ

∣∣∣∣
τ=0

= 2π f (t) =
1

Rt(0)
Imag{R′t(τ)}

∣∣∣∣
τ=0

(16)

Similar equation was presented by Zoukaneri and Porsani (2015).
Taking into considerations the characteristics of the minimum-
phase wavelet, wt(τ), and both the anti-symmetries of the deriva-
tive operator, and the imaginary part of the auto-correlation
function Rt(τ) one obtains the equation for the instantaneous
frequency,

f (t) =
1

π∆t
Imag{

∞∑

n=1

(−1)n−1c(t)n

n
} . (17)

Additionally, it can be shown that equation (17) may be written
as,

f (t) =
1

π∆t
Imag{log(1+ c(t))}= 1

π∆t
arg(1+ c(t))

=
1

π∆t
arctan{ Imag{c(t)}

1+ real{c(t)}} .

(18)
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Time-frequency representation using AR coefficients

Time-frequency representation using AR coefficients

From each estimated signal component x(t) we form the analytic
signal

z(t) = x(t) + iy(t) (1)

where y(t) is the Hilbert transform of x(t). For a data window
{z(t− L∆t), . . . , z(t), . . . , z(t+ L∆t)} (∆t is the sample interval)
we define the instantaneous auto-correlation,

Rt(τ) = wt(τ)⊕ w∗t (τ) = At(τ)eiφt(τ) (2)

where wt(τ) = {1, c(t), c(t)2, . . . , c(t)∞} is the minimum-phase
wavelet corresponding to the inverse of the prediction error operator
of order 1, {1,−c(t)}, ⊕ represents correlation and ∗ represents
complex conjugate.
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Time-frequency representation using AR coefficients

Time-frequency representation using AR coefficients

The coefficient c(t) may be computed by using the Burg algorithm
(Burg, 1975). We remark that |c(t)| < 1. It may be shown that,

Rt(τ) = Rt(0)wt(τ), τ ≥ 0 (3)

where Rt(0) = 1/(1− c(t)c∗(t)). The normalized derivative of eq.
(2) gives,

R′t(τ)
Rt(τ) = A′t(τ)

At(τ) + iφ′t(τ) (4)

where,

φ′t(0) = dφt(τ)
dτ

∣∣∣∣
τ=0

= 2πf(t) = 1
Rt(0)Imag{R

′
t(τ)}

∣∣∣∣
τ=0

(5)
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Time-frequency representation using AR coefficients

Time-frequency representation using AR coefficients

Similar equation was presented by Zoukaneri and Porsani (2015).
Taking into considerations the characteristics of the minimum-phase
wavelet, wt(τ), and both the anti-symmetries of the derivative
operator, and the imaginary part of the auto-correlation function
Rt(τ) one obtains the equation for the instantaneous frequency,

f(t) = 1
π∆tImag{

∞∑
n=1

(−1)n−1c(t)n

n
} . (6)

Additionally, it can be shown that equation (6) may be written as,

f(t) = 1
π∆tImag{log(1 + c(t))} = 1

π∆targ(1 + c(t))

= 1
π∆t arctan{ Imag{c(t)}

1 + real{c(t)}} .

(7)
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Time-frequency representation using AR coefficients

Time-frequency representation using AR coefficients

Then a time-frequency representation of the signal component xk(t)
is given by

Dk(t, f) =
√
zk(t)z∗k(t) δ(f − fk(t)) . (8)

The following pseudo-code illustrates the process:

DO k = 1, . . . ,K ( Components )
• compute the complex trace zk(t) = xk(t) + iyk(t)
• compute the coefficients ck(t)
• compute the instantaneous frequency fk(t) (eq. (7))
• obtain the time-frequency representation Dk(t, f) (eq. (8))

ENDDO
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Numerical Applications

Numerical example

� Real seismic data:

Illustrates the decomposition of a seismic trace into five eigentraces;

The single-channel SSA method was applied to each trace of the
split-spread shot gather to test effect of the recursion and iterations;

Generate of the average amplitude spectra of the shot gathers
obtained after applications of single-channel SSA method.
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Numerical Applications

Figure 1: Decomposition of a seismic trace. Signal components 0 to 4, from high energy
to low energy corresponding to (a), (b), (c), (d), (e), respectively. The sum of the
components in (f) and the original seismic trace in (g).
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Numerical Applications
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Figure 2: The result of SSA with M = 11 recursions in matrix dimension and J = 20
iterations in frequency content. The original shot gather in (a), the high-frequency part
in (b), and the low-frequency part in (c).
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Numerical Applications
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Figure 3: Average amplitude spectra of the data in Fig. 2a with M = 11 and no
recursions (a), with M = 11 recursions in matrix dimension (b), and with M = 11
recursions in matrix dimension and J = 20 iterations in frequency content (c).
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Numerical Applications

� The synthetic signal we analyze is a sum of five elements:

s1(t) = 0.8 cos(30πt) 0 s ≤ t ≤ 6 s
s2(t) = 0.6 cos(70πt) 0 s ≤ t ≤ 6 s
s3(t) = 0.7 cos(130πt) + 5 sin(2πt) 4 s ≤ t ≤ 8 s
s4(t) = sin{8π100t/8

log(100) } 6 s ≤ t ≤ 10 s
s5(t) = 3e−1250(t−2)2 cos(710(t− 2)) 0 s ≤ t ≤ 10 s

It is composed of two harmonic components with frequency of 15 and
35 Hz, a frequency-modulated harmonic around 65 Hz, a sliding
harmonic from 35 to 158 Hz, and a Morlet wavelet with central
frequency of approximated 113 Hz.
We generate a composite signal and decomposed using the
pseudo-code with K=15 components and J=200 iterations.
We sum the 15 different signal components into four new signal
components with their time-frequency representation. The sum of
these gives the composite time-frequency representation is shown.
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Numerical Applications
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Figure 4: Decomposition of the signal (Original) in top of the figure and 15 signal
components.
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Numerical Applications
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Figure 5: Time-frequency representation of the signal components shown in Figure 4. A
window length equal to 2L + 1 = 23 data samples was used for computation of the AR
coefficients.
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Numerical Applications
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Figure 6: Decomposition of the signal (Original) in top of the figure by combining the
signal components in common signal groups.
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Numerical Applications
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Figure 7: Time-frequency representation of the signal components shown in Figure 6. A
window length equal to 2L + 1 = 23 data samples was used for computation of the AR
coefficients.
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Numerical Applications
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Figure 8: Composite time-frequency representation of the signal shown in Figure 6.
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Conclusions

Conclusions

We proposed an iterative and recursive signal decomposition
algorithm based on the SSA method. We demonstrated that the
output corresponds to filtering the time series with a zero-phase filter,
which is the auto-correlation of the first eigenvector of the covariance
matrix of the input signal;

From the analytic signal and AR modeling we derived a new equation
to compute the instantaneous frequency which depend on a single AR
coefficient. From each individual component a time-frequency
representation is obtained and the sum of these gives a
time-frequency distribution of the input signal;

Application to a synthetic data example shows that the method gives
good results compared with other published algorithms.
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