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Uncertainty in reservoir evaluation (URE) project

Project initiated and led by Henning Omre, Dept of Math Sciences,
NTNU, since 1992. Currently Håkon Tjelmeland, Henning Omre and Jo
Eidsvik.

Working with Per Avseth, Børge Arntsen, Bjørn Ursin, Martin Landrø,
++. And with partners (currently 7 companies).

Vision: Provide creative mathematically-based solutions to recognized
challenges in reservoir evaluation. Develop methodologies for analysis of
spatio-temporal phenomena.



URE project

I Spatio-temporal statistics. Computational statistics.
I Use geophysics and geology to contrain models.
I Lithology and fluid prediction. AVO inversion. History matching.



Inversion

m(x) z(x , t) d (x r , t)

Elastic parameters

Propagating Wavefield

Measurements

Michael’s PhD goal: Prediction of elastic properties from seismic
(waveform) data, with uncertainties.
(new ground for URE)



Statistical model formulation

Velocity m with prior p(m), usually Gaussian process in (lateral, depth)
coordinates.

Seismic data d . Likelihood

d (x r , t) = g(x r , t;m,θ) + e

with forward model g(·) and errors e ∼ Normal(0,Σe).

Bayes’ rule:
p(m|d ) ∝ p(d |m)p(m)



Approximate solution

Bayes’ rule:
p(m|d ) ∝ p(d |m)p(m)

Optimize objective function

O(m) = (m−µ)tΣ−1(m−µ)+(d−g(x r , t;m,θ))tΣ−1
e (d−g(x r , t;m,θ))

Prediction:
m̂ = argmax [O(m)]

Uncertainty from Hessian:

V̂ar(m|d ) =
[
−d2O(m)

dm2

]−1

Assumption - Gaussian approximation at mode. Derivatives available.



Sequential formulation

Partitioning the entire data record d into Nc sets

p(m|d ) ∝ p(d |m)p(m)

= p(m)
Nc∏
i=1

p(d i |d 1:i−1,m)

Sequential model updating (in offset, time and/or frequency).

p(m)→ p(m|d 1)→ p(m|d 1,d 2)→ p(m|d 1,d 2,d 3)

Possibly a robust path to solution.



Kalman-like sequential updating

Linear state-space model, initialised with µ0 and P0:

dynamics: mt = mt−1 ,

observation: d t = H tmt + et , et ∼ Normal(0,R)

Forecast step for mean and variance:

µt = µt−1

Pt = Pt−1

Analysis step for mean and variance:

µt = µt + K t (y t −H tµt)

Pt = (I −K tH t)Pt

Kalman gain:

K t = PtHT
t

(
H tPtHT

t + R
)−1



Ensemble based approximation

I Prior (and posterior) represented by an ensemble of realisations{
mf
}Ne

i=1 ∼ p(m)

{ma}Ne

i=1 ∼ p(m|d )

I Generally Ne � Nm and/or Ne � Nd .
I High dimensional parameter- and data-space. Not many sampling

based methods are suitable → choice of Ensemble Kalman Filter.
I Can handle (some degree of) nonlinearity.



Approach for parameter estimation with EnKF

I Assimilation cycle update equation:

ma
i = mf

i + K̂
(
d − d f

i

)
with

d f
i = g(mf

i ) + e i , e i ∼ Normal(0,Σe), i = 1, . . . ,Ne

with g(·) now defining forward evaluation and partitioning of data.
I Estimating Kalman gain matrix K from forecast models and data:

K̂ = Σ̂m,d Σ̂
−1
d

I Linear correlations can identify (most influential) subset of
parameters.



Univariate example - forecast samples

mi ∼ p(m), di = mi + N(0, 52)



Univariate example - regression fit



Univariate example - observation
d = 9.



Univariate example - analysis or update step



Univariate example - prior and posterior



Sample covariance matrix

K̂ based on Monte Carlo samples.

(a) True (b) Ne � Nx

(c) Ne = Nx (d) Ne � Nx



Properties and challenges

I Forward model evaluation is costly. And data is non-linear function
of parameters.

I Seismograms are non-stationary time series.
I Multicollinearity in data.
I Combination of large data space and small ensemble space →

ensemble collapse.
I Observations are non-local.



Case

I Project with data from BP.
I 1D (layered subsurface) assumptions → simpler and faster model.
I Forward model can be implemented in various ways, but here using

Erzsol3, an old open source F77 code.



Data

I True model based on well log
data.

I Observations (synthetic) are
CMP gather.

I Data partitioning, blocks of
offset-time intervals.
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Inversion
Sequential updating (yellow-black)

(h) Mean (i) Error



Inversion
Sequential updating (yellow to black)

(j) Standard deviation



Inversion results

(k) Initial prior (l) Final posterior



Ongoing work

Figure: Example of Partial least squares for data reduction



Ongoing work
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Summary

I Uncertainty quantification in seismic inversion. Very costly forward
model, approximate prediction and uncertainties via ensembles, with
useful properties.

I Synthetic models and CMP data showing good results.
I Data partitioning approach required to reduce data size and avoid

collapse. Now studying different blocking schemes in time, offset
and frequency.

I Standard techniques like localization for Ensemble Kalman filter are
difficult for seismic data.
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