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Introduction

• Full-waveform inversion involves numerical modeling of wave propagation.

• Computationally demanding.

• Produces large amounts of data.

• Elastic wave equation adds more computations and data storage requirements
over the acoustic approximation.
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Introduction

• Graphics processing units can accelerate FWI.

• Industrial graphics processing units are expensive.

• Can cheaper gaming GPUs be used instead of expensive industrial GPUs?

• Can we eliminate much of the slow file I/O by keeping wavefields in memory?
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Theory

• In FWI we want to find a parameter model m that can produce modeled data
u which is close to some measured data d.

• Apply a numerical wave operator that maps m from the model domain into
the data domain:

L(m) = u. (1)

• Ideally, find an inverse operator to map d from the data domain to the model
domain:

m = L−1(d). (2)
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Theory

• Define a misfit functional:

F(m) =
1

2

ns∑
j=0

nr∑
i=0

||ûi,j(m)− d̂i,j ||22. (3)

• The solution is an extreme point of F(m):

m′ = arg min
m

F(m). (4)
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Theory

• Update the model iteratively:

mk+1 = mk − αkH
−1
k δmk. (5)

• Hessian matrix contains second derivatives of the misfit functional

• Approximated from previous gradients (L-BFGS)

• Gradients are found via the adjoint method, Mora (1987).

δm̂(x) =
∑
ns

∫
dt
∑
nr

∂ui(xS,xR, t)

∂m(x)
δui(xS,xR, t). (6)

δui(xS,xR, t) =

∫
V

dV
∂ui(xS,xR, t)

∂m(x)
δm(x). (7)
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Gradients, 2D

δρ = −
∑
ns

∫
dtu̇jΨ̇j ,

δc11 = −
∑
ns

∫
dtu1,1Ψ1,1,

δc33 = −
∑
ns

∫
dtu3,3Ψ3,3,

δc13 = −
∑
ns

∫
dt
(

Ψ3,3u1,1 + Ψ1,1u3,3

)
,

δc44 = −
∑
ns

∫
dt(Ψ3,1 + Ψ1,3)(u3,1 + u1,3).
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Hardware

• “Maur” (“Ant”)

• 21 nodes

• 2 × Intel Xeon E5-2660 10-core CPUs

• 2 × Nvidia GTX Titan X GPU

• 128 GB RAM

Photo: NTNU HPC



Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Implementation

• Source-by-source parallelization.

• Less jobs per node leads to more memory available per source modeling, which
is a large part of what enables us to do FWI in-memory.

• Wavefield reconstruction by simple interpolation.
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In-memory algorithm

Insert
source

Copy wavefields to
pinned host memory

Perform mod-
eling step

Copy wavefields from
pinned host memory

Record
data

Copy recorded data
to host memory

Find residuals, scale
and integrate data

it < nt

it > nt

cudaMemcpy

CPU

GPU



Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

In-memory algorithm

Insert
source

Copy wavefields to
pinned host memory

Perform mod-
eling step

Copy wavefields from
pinned host memory

Record
data

Copy recorded data
to host memory

Find residuals, scale
and integrate data

it < nt

it > nt

cudaMemcpy

CPU

GPU

Fill wavefield
buffer on GPU

Reconstruct
wavefield

Insert recording
as source

Perform ad-
joint step

Differentiate
wavefields

Calculate
gradients

it < nbuff

it > nbuff

it < nt



Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

In-memory algorithm

Insert
source

Copy wavefields to
pinned host memory

Perform mod-
eling step

Copy wavefields from
pinned host memory

Record
data

Copy recorded data
to host memory

Find residuals, scale
and integrate data

it < nt

it > nt

cudaMemcpy

CPU

GPU

Fill wavefield
buffer on GPU

Reconstruct
wavefield

Insert recording
as source

Perform ad-
joint step

Differentiate
wavefields

Calculate
gradients

it < nbuff

it > nbuff

it < nt

Copy gradients
to host memory

Perform model
update and save
results to disk

it > nt



Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Model

• Synthetic model representative of
the Gullfaks field

• 10 km long, 3 km deep

• 2001× 600 grid points

• Total of 101 shots and 2001 receivers

• 3.3 second recording, 5500 time steps

• Source: 15 Hz Ricker wavelet
bandpass filtered to 0-7 Hz, 0-10 Hz,
and unfiltered.

• Receivers: Pressure

• ∼ 50 GB RAM per source

2000 4000 6000 8000
x (m)

500

1000

1500

2000

2500

3000

z 
(m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)
−0.05 0.00 0.05 0.10 0.15 0.20

ε



Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

True model
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Starting model
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Results
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Results
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GPU
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CPU
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FWI runtimes
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Conclusions

• Achieved approximately 75 times speedup of single source modeling.

• Achieved approximately 12 times speedup of FWI.

• Eliminated all temporary writing to disk.

• In-memory GPU code is fastest, but not by a huge margin.

• Going from CPU to GPU is by far the biggest improvement.
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