
Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Fast in-memory elastic full-waveform
inversion using consumer-grade GPUs

Tore S. Bergslid1, Espen Birger Raknes2 and Børge Arntsen1

1: Norwegian University of Science and Technology (NTNU)
Department of Geoscience and Petroleum

2: Formerly NTNU, presently AkerBP

E-mail: tore.bergslid@ntnu.no

Trondheim
April 25th 2017

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Outline

Introduction

Theory

Hardware

Implementation

Models and survey setup

Results

Conclusions

Acknowledgments

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Full-waveform inversion involves numerical modeling of wave propagation.

• Computationally demanding.

• Produces large amounts of data.

• Elastic wave equation adds more computations and data storage requirements
over the acoustic approximation.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Full-waveform inversion involves numerical modeling of wave propagation.

• Computationally demanding.

• Produces large amounts of data.

• Elastic wave equation adds more computations and data storage requirements
over the acoustic approximation.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Full-waveform inversion involves numerical modeling of wave propagation.

• Computationally demanding.

• Produces large amounts of data.

• Elastic wave equation adds more computations and data storage requirements
over the acoustic approximation.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Full-waveform inversion involves numerical modeling of wave propagation.

• Computationally demanding.

• Produces large amounts of data.

• Elastic wave equation adds more computations and data storage requirements
over the acoustic approximation.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Graphics processing units can accelerate FWI.

• Industrial graphics processing units are expensive.

• Can cheaper gaming GPUs be used instead of expensive industrial GPUs?

• Can we eliminate much of the slow file I/O by keeping wavefields in memory?

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Graphics processing units can accelerate FWI.

• Industrial graphics processing units are expensive.

• Can cheaper gaming GPUs be used instead of expensive industrial GPUs?

• Can we eliminate much of the slow file I/O by keeping wavefields in memory?

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Graphics processing units can accelerate FWI.

• Industrial graphics processing units are expensive.

• Can cheaper gaming GPUs be used instead of expensive industrial GPUs?

• Can we eliminate much of the slow file I/O by keeping wavefields in memory?

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Introduction

• Graphics processing units can accelerate FWI.

• Industrial graphics processing units are expensive.

• Can cheaper gaming GPUs be used instead of expensive industrial GPUs?

• Can we eliminate much of the slow file I/O by keeping wavefields in memory?

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• In FWI we want to find a parameter model m that can produce modeled data
u which is close to some measured data d.

• Apply a numerical wave operator that maps m from the model domain into
the data domain:

L(m) = u. (1)

• Ideally, find an inverse operator to map d from the data domain to the model
domain:

m = L−1(d). (2)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• In FWI we want to find a parameter model m that can produce modeled data
u which is close to some measured data d.

• Apply a numerical wave operator that maps m from the model domain into
the data domain:

L(m) = u. (1)

• Ideally, find an inverse operator to map d from the data domain to the model
domain:

m = L−1(d). (2)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• In FWI we want to find a parameter model m that can produce modeled data
u which is close to some measured data d.

• Apply a numerical wave operator that maps m from the model domain into
the data domain:

L(m) = u. (1)

• Ideally, find an inverse operator to map d from the data domain to the model
domain:

m = L−1(d). (2)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• Define a misfit functional:

F(m) =
1

2

ns∑
j=0

nr∑
i=0

||ûi,j(m)− d̂i,j ||22. (3)

• The solution is an extreme point of F(m):

m′ = arg min
m

F(m). (4)

Initial
model

Forward
modeling

Are
modeled
and true

data close
enough?

End
model

New
model

yes no

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• Define a misfit functional:

F(m) =
1

2

ns∑
j=0

nr∑
i=0

||ûi,j(m)− d̂i,j ||22. (3)

• The solution is an extreme point of F(m):

m′ = arg min
m

F(m). (4)

Initial
model

Forward
modeling

Are
modeled
and true

data close
enough?

End
model

New
model

yes no

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• Update the model iteratively:

mk+1 = mk − αkH
−1
k δmk. (5)

• Hessian matrix contains second derivatives of the misfit functional

• Approximated from previous gradients (L-BFGS)

• Gradients are found via the adjoint method, Mora (1987).

δm̂(x) =
∑
ns

∫
dt
∑
nr

∂ui(xS,xR, t)

∂m(x)
δui(xS,xR, t). (6)

δui(xS,xR, t) =

∫
V

dV
∂ui(xS,xR, t)

∂m(x)
δm(x). (7)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• Update the model iteratively:

mk+1 = mk − αkH
−1
k δmk. (5)

• Hessian matrix contains second derivatives of the misfit functional

• Approximated from previous gradients (L-BFGS)

• Gradients are found via the adjoint method, Mora (1987).

δm̂(x) =
∑
ns

∫
dt
∑
nr

∂ui(xS,xR, t)

∂m(x)
δui(xS,xR, t). (6)

δui(xS,xR, t) =

∫
V

dV
∂ui(xS,xR, t)

∂m(x)
δm(x). (7)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• Update the model iteratively:

mk+1 = mk − αkH
−1
k δmk. (5)

• Hessian matrix contains second derivatives of the misfit functional
• Approximated from previous gradients (L-BFGS)

• Gradients are found via the adjoint method, Mora (1987).

δm̂(x) =
∑
ns

∫
dt
∑
nr

∂ui(xS,xR, t)

∂m(x)
δui(xS,xR, t). (6)

δui(xS,xR, t) =

∫
V

dV
∂ui(xS,xR, t)

∂m(x)
δm(x). (7)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Theory

• Update the model iteratively:

mk+1 = mk − αkH
−1
k δmk. (5)

• Hessian matrix contains second derivatives of the misfit functional
• Approximated from previous gradients (L-BFGS)

• Gradients are found via the adjoint method, Mora (1987).

δm̂(x) =
∑
ns

∫
dt
∑
nr

∂ui(xS,xR, t)

∂m(x)
δui(xS,xR, t). (6)

δui(xS,xR, t) =

∫
V

dV
∂ui(xS,xR, t)

∂m(x)
δm(x). (7)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Gradients, 2D

δρ = −
∑
ns

∫
dtu̇jΨ̇j ,

δc11 = −
∑
ns

∫
dtu1,1Ψ1,1,

δc33 = −
∑
ns

∫
dtu3,3Ψ3,3,

δc13 = −
∑
ns

∫
dt
(

Ψ3,3u1,1 + Ψ1,1u3,3

)
,

δc44 = −
∑
ns

∫
dt(Ψ3,1 + Ψ1,3)(u3,1 + u1,3).

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Hardware

• “Maur” (“Ant”)

• 21 nodes

• 2 × Intel Xeon E5-2660 10-core CPUs

• 2 × Nvidia GTX Titan X GPU

• 128 GB RAM

Photo: NTNU HPC

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Implementation

• Source-by-source parallelization.

• Less jobs per node leads to more memory available per source modeling, which
is a large part of what enables us to do FWI in-memory.

• Wavefield reconstruction by simple interpolation.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Implementation

• Source-by-source parallelization.

• Less jobs per node leads to more memory available per source modeling, which
is a large part of what enables us to do FWI in-memory.

• Wavefield reconstruction by simple interpolation.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Implementation

• Source-by-source parallelization.

• Less jobs per node leads to more memory available per source modeling, which
is a large part of what enables us to do FWI in-memory.

• Wavefield reconstruction by simple interpolation.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

In-memory algorithm

Insert
source

Copy wavefields to
pinned host memory

Perform mod-
eling step

Copy wavefields from
pinned host memory

Record
data

Copy recorded data
to host memory

Find residuals, scale
and integrate data

it < nt

it > nt

cudaMemcpy

CPU

GPU

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

In-memory algorithm

Insert
source

Copy wavefields to
pinned host memory

Perform mod-
eling step

Copy wavefields from
pinned host memory

Record
data

Copy recorded data
to host memory

Find residuals, scale
and integrate data

it < nt

it > nt

cudaMemcpy

CPU

GPU

Fill wavefield
buffer on GPU

Reconstruct
wavefield

Insert recording
as source

Perform ad-
joint step

Differentiate
wavefields

Calculate
gradients

it < nbuff

it > nbuff

it < nt

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

In-memory algorithm

Insert
source

Copy wavefields to
pinned host memory

Perform mod-
eling step

Copy wavefields from
pinned host memory

Record
data

Copy recorded data
to host memory

Find residuals, scale
and integrate data

it < nt

it > nt

cudaMemcpy

CPU

GPU

Fill wavefield
buffer on GPU

Reconstruct
wavefield

Insert recording
as source

Perform ad-
joint step

Differentiate
wavefields

Calculate
gradients

it < nbuff

it > nbuff

it < nt

Copy gradients
to host memory

Perform model
update and save
results to disk

it > nt

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Model

• Synthetic model representative of
the Gullfaks field

• 10 km long, 3 km deep

• 2001× 600 grid points

• Total of 101 shots and 2001 receivers

• 3.3 second recording, 5500 time steps

• Source: 15 Hz Ricker wavelet
bandpass filtered to 0-7 Hz, 0-10 Hz,
and unfiltered.

• Receivers: Pressure

• ∼ 50 GB RAM per source

2000 4000 6000 8000
x (m)

500

1000

1500

2000

2500

3000

z
(m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)
−0.05 0.00 0.05 0.10 0.15 0.20

ε

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

True model

2000 4000 6000 8000
x (m)

500

1000

1500

2000

2500

3000

z
(m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Starting model

2000 4000 6000 8000
x (m)

500

1000

1500

2000

2500

3000

z
(m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-7Hz
Iteration 5

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-7Hz
Iteration 10

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-7Hz
Iteration 15

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-7Hz
Iteration 18

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-7Hz
Iteration 18
Smoothed

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-10Hz
Iteration 5

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-10Hz
Iteration 10

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-10Hz
Iteration 15

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

0-10Hz
Iteration 20

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Raw
Iteration 5

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Raw
Iteration 10

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Raw
Iteration 15

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Raw
Iteration 20

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Raw
Iteration 95

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Results

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

True model

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

GPU

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

CPU

2000 4000 6000 8000
x (m)

500
1000
1500
2000
2500
3000

z (
m

)

1500 1800 2100 2400 2700 3000 3300
VP0 (m/s)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

FWI runtimes

CPU GPU I/O GPU mem0

20

40

60

80

100

120

Ru
nt

im
e

(m
in

)

CPU vs GPU I/O vs GPU in-memory

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

FWI runtimes

GPU I/O GPU mem0

2

4

6

8

10

Ru
nt

im
e

(m
in

)

GPU I/O vs GPU in-memory

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

FWI runtimes

0 2 4 6 8 10 12 14 16
Number of nodes

100

101

102

Ru
nt

im
e

(m
in

)

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Conclusions

• Achieved approximately 75 times speedup of single source modeling.

• Achieved approximately 12 times speedup of FWI.

• Eliminated all temporary writing to disk.

• In-memory GPU code is fastest, but not by a huge margin.

• Going from CPU to GPU is by far the biggest improvement.

Introduction Theory Hardware Implementation Models and survey setup Results Conclusions Acknowledgments

Acknowledgments

We thank the ROSE consortium and their sponsors for support.

	Introduction
	Theory
	Hardware
	Implementation
	Models and survey setup
	Results
	Conclusions
	Acknowledgments

