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Hooke's Law
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What is the overburden stress path?

e Geertsma (1973): Linear elasticity, isotropic rock, no poroelastic effect
+ no elastic contrast between reservoir and surroundings

e Constant mean stress in surroundingrocks

Volumetric strain
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* Apsres)<0 for depletion: Vertical stress decrease above centre of reservoir,
horizontal stress increase — opposite at reservoir edges ("stress arching")

* Stress path governed by the aspect ratio (height/diameter) of the depleting
zone + Poisson's ratio



Overburden Stress Path — beyond Geertsma
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* Elastic contrast between reservoir
and surrounding rock:
A . . .
— s 7y = Apj  Stress archingincreases for stiff
= Ao, overburden
] " A v >0 if overburdenis more than
= twice as stiff than the reservoir, i.e.
00 both vertical and horizontal stress
decrease
- * Reservoir tilt promotes arching
05 | T oot * Non-elasticity (plasticity, faulting)
— gV eg Tilt .
0.1 ! 10 oo will affect the stress path further
Elastic contrast E_ /E, . [-] =~ gh10deg Tilt

Fit to FEM simulations of elastic & isotropic reservoir & surroundings (Mahi, 2003; Mulders, 2003).
Reservoir @ 3000 m depth, h/R = 0.2, Poisson's ratio = 0.30 everywhere.
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Wave Velocities depend on Stress & Stress Path

* Most laboratory experiments are performed along one stress path
only (usually isostatic)

* Here: 4 different undrained stress paths are applied near the in situ

stress state of field shale cores e -

We denote the stresspath by « = Ao, //:\\ [\ ﬂ /_\ M
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ISO: Incrementally isostatic (Ao, = Ao, k= 1)
3AX: Triaxial or Uniaxial stress (Ao, =0, k= 0)

Ko : Uniaxialstrain (¢,=0, k= K)
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Wave Velocities depend on Stress & Stress Path

* Assume velocties depend linearly on stress change
* OK for small stress changes around in situ state
* From literature, shales show linear stress sensitivity over large stress ranges

Av, —
—=AAo+ BA(0o,-0,)-CAp;
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* j: Por Swave along any direction; p; = pore pressure; s = mean stress

* This implies linearity in stress path k, since pore pressure change also
is expected to exhibit linearity (B, & A, are Skempton parameters):
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Wave Velocities depend on Stress & Stress Path
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» Linearity of stress sensitivity
with stress path confirmed
from axial ultrasonic P-wave
measurements in field shale
core

» Only axial P-wave shown —
but also other modes show
the linear trend

- - » The influence of stress path is

significant!



Stress & Stress Path dependent Pore Pressure
Change

* This behavior is in perfect >
agreement with Skempton's A
(1954) relationship

A
A‘Zi = B, [K+AS(1—K)]

* This permits us to determine
B, and A,

Pore Pressure Change Ap;[MPa]
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Stress Path dependent R

* The dilation factor or R-
parameter (Rgste, Landrg &
Stovas, Hatchell & Bourne,
2004 or so) is a measure of
strain sensitivity:

Av
R, =
v, Ae,
* Strain depends on stress
path (by Hooke's law in

linear & isotropic
elasticity)=>
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From laboratory to in situ stress sensitivity

* Translated to the overburden, the
laboratory stress path is
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* I[f we know the in situ stress path from
geomechanical modelling, we can now

calculate the in situ stress sensitivity
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From laboratory to in situ stress sensitivity

* For the ficticious case of
a reservoir at 3000m
depth with h/R =0.2, v =
0.30 and the measured
stress path sensitivity
fromthe lab, the in situ
stress sensitivity is
determined by the elastic
contrast and the tilt
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Frequency dependence?

* Similar tests on Pierre Shale (not
fully saturated) with simultaneous

ultrasonic and low frequency
measurements

e Quasi-staticTl E-moduliand

Poisson's ratios are converted to G,

=> axial P-wave velocity —
introduces uncertainty

* In this case, the seismic stress
sensitivity by far exceeds the
ultrasonic one, and shows the

same trend as a function of stress

path
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Further elaboration by Dawid Szewczyk et al., ROSE 2016



Conclusions

* Linear stress sensitivity => Linear stress-path sensitivity

 Ultrasonic (and low frequency) measurements confirm the validity of
linear stress path dependencein shales, in particular when tested
near their in situ stress state

 Geomechanical modeling can translate the laboratory measured
stress path sensitivity into expected velocity changes in the field

* There is indication that the stress sensitivity at seismic frequencies
may be larger than ultrasonic stress sensitivity in shale
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