Use of wavefront attributes
for tomographic model building
with active and passive seismic data

D. Gajewski, A. Bauer, B. Schwarz and J. Walda

Institute of Geophysics, University of Hamburg
Wave Inversion Technology (WIT)



Motivation

# ZO CRS stack is a powerful tool for data analysis



Motivation .

# ZO CRS stack is a powerful tool for data analysis

# Tomography based on ZO wavefront attributes (Duveneck, 2004)




Wavefront Tomography .

For a consistent velocity model NIP-waves focus at the NIP for zero
traveltime when propagated back to the subsurface (Duveneck, 2004).
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Motivation .

» Z0 CRS stack is a powerful tool for data analysis

# Tomography based on ZO wavefront attributes (Duveneck, 2004)
# Results thus far based on reflections

» Diffraction moveout can be described entirely in ZO

» Diffractions and passive events are strongly related

— Use diffracted and passive events for velocity inversion
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» Diffraction

» Passive seismics
Field data example

Conclusions and outlook



Wavefront attribute estimation

# Active seismics: (nonhyperbolic) ZO CRS stack

t = ts(to, o, Rnip, An) + t9( o, o, Bnip, Bn)



Wavefront attribute estimation

# Active seismics: (nonhyperbolic) ZO CRS stack

t = ts(to, o, Rnip, An) + t9( o, o, Bnip, Bn)

» Diffractions: Only one wavefront (Ry = Rnip - R)

t= ts(th Q, R) + tg(th «, R)



Wavefront attribute estimation

# Active seismics: (nonhyperbolic) ZO CRS stack

t = ts(fo, o, Rnip, Bn) + ty(fo, o, Rnip, RN)
» Diffractions: Only one wavefront (Ry = Rnip - R)
t= ts(th Q, R) + tg(th «, R)

# Passive seismics: One additional attribute (i)

= ts + tg(t0,0é, R)



Wavefront tomography: Image space .
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Wavefront tomography: Model space
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Wavefront tomography: Inverse problem

# Input: n picked data points (xo, to, a, R);
» Condition: wavefronts focus at zero time

# Minimize misfit between measured data d and modeled data

V(m) = —Hd—f HD+/\[8xxv(x,z),8zzv(x,z)}

# Output: smooth velocity model v(x, z)




Diffraction example: Input semblance
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Diffraction example: Picked data points
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Diffraction example: Initial model
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Diffraction example: Inverted model
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Diffraction example: Correct model
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Passive data example
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Passive data example .
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Passive attribute panels
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Passive attribute panels .
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Joint location and velocity inversion
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Joint location and velocity inversion
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Joint location and velocity inversion
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Joint location and velocity inversion
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Field data: Stack
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Field data: Input semblance
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Field data: Reflection-based inversion .

Lateral distance [km]
140 145 150 155 160

Depth [km]
r
Velocity [km/s]

Reflection-based inverted model



Field data: Reflection-based inversion .

Lateral distance [km]
140 145 150 155 160

Depth [km]
Velocity [km/s]

Reflection-based inverted model



Field data: Reflection-based inversion .

Lateral distance [km]
140 145 150 155 160 165

Depth [km]
e
Velocity [km/s]

- E

Reflection-based inverted model



Field data: Reflection-based inversion .
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Field data: Joint inversion
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Field data: Joint inversion
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Conclusions .

» Wavefront tomography is an efficient tool for velocity inversion

# No interaction with prestack data volume

# Use of diffractions enhances stability and model resolution

# Joint passive event location and velocity inversion




Outlook

# Improvement of the attribute estimation

» Global optimization



Outlook

# Improvement of the attribute estimation

» Global optimization
» Conflicting dip processing



Outlook

# Improvement of the attribute estimation

» Global optimization
» Conflicting dip processing
» Diffraction separation and enhancement



Outlook

# Improvement of the attribute estimation

o
o
o
o

Global optimization

Conflicting dip processing

Diffraction separation and enhancement
Multiple suppression



Outlook

# Improvement of the attribute estimation

Global optimization

Conflicting dip processing

Diffraction separation and enhancement
Multiple suppression

Passive source time accuracy

e o o o @



Outlook

# Improvement of the attribute estimation

Global optimization

Conflicting dip processing

Diffraction separation and enhancement
Multiple suppression

Passive source time accuracy

e o o o @

# Implementation of a global focusing criterion



Outlook .

# Improvement of the attribute estimation

Global optimization

Conflicting dip processing

Diffraction separation and enhancement
Multiple suppression

Passive source time accuracy

e o o o @

# Implementation of a global focusing criterion

— Highly constrained wavefront tomography



Outlook .

# Improvement of the attribute estimation

Global optimization

Conflicting dip processing

Diffraction separation and enhancement
Multiple suppression

Passive source time accuracy

e o o o @

# Implementation of a global focusing criterion
— Highly constrained wavefront tomography
» Application in 3D



Outlook .

# Improvement of the attribute estimation

Global optimization

Conflicting dip processing

Diffraction separation and enhancement
Multiple suppression

Passive source time accuracy
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# Implementation of a global focusing criterion
— Highly constrained wavefront tomography

» Application in 3D

# Anisotropy



Acknowledgments

X ]

X ]

X ]

X ]

Applied Seismics Group Hamburg

Sponsors of the WIT consortium

TGS

Seismic Un*x

NORSAR



Field data: Picked data points

Lateral distance [km]
140 145 150 155

Two-way time [s]

Picked data points

160

1.0

0.5

Semblance



