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Ray based Kirchhoff migration
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Reverse-time migration
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Motivation

• The shortcomings of ray-theoretical depth migration motivated the
development of less efficient, but more accurate wave-theoretical methods

• Modern PSDM algorithms based on finite-frequency wavefield extrapolation,
such as one-way wave equation migration (Berkhout, 1980), and reverse-time
migration (Baysal et al., 1983) are able to handle complex velocity fields

• However, the problem of automatically estimating the background velocity
field over complex geological settings is still unsolved
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Review of wave equation migration velocity analysis (WEMVA)

• WEMVA is a kind of seismic tomography method based on linearized or
non-linear inversion of seismic reflection data in the image-domain using wave
theoretical methods (Chavent and Jacewitz, 1995; Biondi and Sava, 1999; Shen
et al., 2003; Sava and Biondi, 2004; Shen and Symes, 2008; Mulder, 2008)
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Acoustic reverse-time migration (RTM)

Prestack depth migration = Wavefield reconstruction + Imaging condition

Wavefield reconstruction in RTM[
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ws(x, t; s) = f(x, t; s)[
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]
wr(x, t; s) = d(x, T − t; s)

Imaging condition

R(x; s) =

∫ T

0
ws(x, t; s)wr(x, T − t; s)



Introduction WEMVA Sleipner Results Conclusion

x (km)

z 
(k

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

Wrong velocities

z 
(k

m
)

Offset (km)
0 0.5 1

0.6

0.8

1

1.2

Correct velocities

z 
(k

m
)

Offset (km)
0 0.5 1

0.6

0.8

1

1.2



Introduction WEMVA Sleipner Results Conclusion

Wave equation migration velocity analysis by stack-power

Stack-power

Find a P-wave velocity model that maximizes the stack over sources of the depth
migrated image

Define J (v) as the stack of the migrated image. WEMVA is then the problem

arg max
v

J (v) =
∑
s

∑
x

∂

∂x3
[W(x)R(x,v; s)]2

Solved using an iterative method

vk+1 = vk + αkgk,

vk model at iteration k
gk gradient of J (v) at iteration k
αk step length at iteration k

Initial stack-power

Maximum
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Organization of WEMVA

• Using an initial model (binit),
migrate the seismic data, and stack
to form an image

• Evaluate J by computing the
stack-power of the stacked image

• Using the stacked image compute
the gradient ∂J /∂v

• Finally, project the gradient in a
tri-cubic B-spline basis

binit boptL-BFGS

Migration & Gradient

Beval Bproj
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3D WEMVA implementation
Major challenges

• Computational Cost (Combination of high frequencies and 3D Reverse-time
migration requirements)

• Checkpointing problems (Partially solved by recomputation from the
boundaries)

• Sensitivity to multiples (Solution has been to use 3D SRME. However, this
method gives suboptimal results in poorly sampled shallow water NAZ
datasets.)
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CO2 injection in Utsira

• CO2 from the Sleipner field is stored
in Utsira Formation, North Sea

• Reservoir unit is at 800-1100 m
depth

• One CO2 injector at ∼ 1012 meter

• Injected gas is ∼ 98% CO2

• 15.3 Mt CO2 have been injected (as
of May 2014, ∼ 0.9 Mt per annum)
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Sleipner 1994 data - pre-injection

• The geometry of the data consists in
a minimum offset of 0.25 km and
maximum offset of 1.7 km

• There are 5 cables. Crossline
receiver interval is 100 meters and
inline receiver interval is 12.5 m

• There are 1708 shots.The shooting
pattern is flip-flop with a shot
interval of 18.75 m

• Recording time 2.3 s

• Processing included multiple
attenuation (3D SRME) and muting
of refractions and wide-angle
reflections

• We filter the frequencies to 30 Hz
and use only 854 shots.
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Workflow

• Demultiple using SRME

• Binning

• Traditional velocity analysis to produce initial velocity model (NMO
velocities)

• Low pass filter of data with high cut at 30 Hz

• Time gain (t1.5 gave best results)

• WEMVA
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Initial images
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Updated images after 2 iterations
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Updated CIGs after 2 iterations
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NMO velocities
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MVA velocities after 2 iterations
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Depth Slice comparison
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2006 data
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Sleipner 2006 data

• The geometry of the data consists in
a minimum offset of 0.15 km and
maximum offset of 1.7 km

• There are 8 cables. Crossline
receiver interval is 50 meters and
inline receiver interval is 12.5 m

• There are 1419 shots.The shooting
pattern is flip-flop with a shot
interval of 18.75 m

• Recording time 2.3 s

• Processing included multiple
attenuation (3D SRME) and muting
of refractions and wide-angle
reflections
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Problems and issues

• Currently the velocity analysis is not converging

• The enhanced amplitudes of the reflections due to gas complicates the velocity
analysis

• The region around the gas injection dominates the objective function

• Interbed multiples generated within the gas cloud can also cause problems for
WEMVA

• One attempt to overcome the issues was to define a weighting function to
counter the amplitude effects

• Another strategy was to mute the gradient such as to only allow updates at
and around the gas injection volume
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Initial images
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Updated images after 3 iterations
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Initial CIGs
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Updated CIGs after 3 iterations
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NMO velocities
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MVA velocities after 2 iterations
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Conclusion

• We perform wave equation migration velocity to a 3D narrow azimuth survey
at Sleipner

• The algorithm is based on maximization of stack-power of the depth migrated
images constructed using reverse-time migration

• The method is applied to the 1994 and 2006 vintages of the 3D seismic data

• The method converges acceptably after 2 iterations for the 1994 data

• For the 2006 dataset, the method diverges, and is not able to acceptably
improve the image under the Utsira formation

• Possible causes are the lack of longer offsets in the data, the poor scaling, and
the presence of strong interbed multiples
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