
Industry-scale finite difference wave modelling
on a single GPU using the out-of-core technique

Jon Marius Venstad

Norwegian University of Science and Technology (NTNU)
Department of Petroleum Engineering & Applied Geophysics

E-mail: venstad@gmail.com

The ROSE Meeting, 2015

What is a Graphical Processing Unit?

I Is specialised consumer hardware.

I Has ×100 the arithmetic capabilites of one CPU core.

I Requires massively parallel, repeated computations.

I Has only limited storage.

What is a Graphical Processing Unit?

I Is specialised consumer hardware.

I Has ×100 the arithmetic capabilites of one CPU core.

I Requires massively parallel, repeated computations.

I Has only limited storage.

What is a Graphical Processing Unit?

I Is specialised consumer hardware.

I Has ×100 the arithmetic capabilites of one CPU core.

I Requires massively parallel, repeated computations.

I Has only limited storage.

What is a Graphical Processing Unit?

I Is specialised consumer hardware.

I Has ×100 the arithmetic capabilites of one CPU core.

I Requires massively parallel, repeated computations.

I Has only limited storage.

What is a Graphical Processing Unit?

I Is specialised consumer hardware.

I Has ×100 the arithmetic capabilites of one CPU core.

I Requires massively parallel, repeated computations.

I Has only limited storage.

What is Finite Difference Modelling?

I Used to model physical phenomena, e.g. wave propagation.

I Finer models and more calculations allow for higher accuracy.

I Significant memory and computational requirements for 3D.

I Use Graphical Processing Units (GPUs) for computation.

I Circumvent the limitations posed by the size of the GPU.

What is Finite Difference Modelling?

I Used to model physical phenomena, e.g. wave propagation.

I Finer models and more calculations allow for higher accuracy.

I Significant memory and computational requirements for 3D.

I Use Graphical Processing Units (GPUs) for computation.

I Circumvent the limitations posed by the size of the GPU.

What is Finite Difference Modelling?

I Used to model physical phenomena, e.g. wave propagation.

I Finer models and more calculations allow for higher accuracy.

I Significant memory and computational requirements for 3D.

I Use Graphical Processing Units (GPUs) for computation.

I Circumvent the limitations posed by the size of the GPU.

What is Finite Difference Modelling?

I Used to model physical phenomena, e.g. wave propagation.

I Finer models and more calculations allow for higher accuracy.

I Significant memory and computational requirements for 3D.

I Use Graphical Processing Units (GPUs) for computation.

I Circumvent the limitations posed by the size of the GPU.

What is Finite Difference Modelling?

I Used to model physical phenomena, e.g. wave propagation.

I Finer models and more calculations allow for higher accuracy.

I Significant memory and computational requirements for 3D.

I Use Graphical Processing Units (GPUs) for computation.

I Circumvent the limitations posed by the size of the GPU.

How to: Finite Difference Modelling

Model a given differential equation, e.g.:

∂vi
∂t

=
1

ρ

(
∂τij
∂j

)
(1)

∂τij
∂t

= δijλ
∂vk
∂k

+ µ

(
∂vi
∂j

+
∂vj
∂i

)
(2)

1. Discretise each parameter and variable onto a 3D cube.

2. Approximate derivatives by weighted sums.

3. Update each variable across a small ∆t, many times.

How to: Finite Difference Modelling

Model a given differential equation, e.g.:

∂vi
∂t

=
1

ρ

(
∂τij
∂j

)
(1)

∂τij
∂t

= δijλ
∂vk
∂k

+ µ

(
∂vi
∂j

+
∂vj
∂i

)
(2)

1. Discretise each parameter and variable onto a 3D cube.

2. Approximate derivatives by weighted sums.

3. Update each variable across a small ∆t, many times.

How to: Finite Difference Modelling

Model a given differential equation, e.g.:

∂vi
∂t

=
1

ρ

(
∂τij
∂j

)
(1)

∂τij
∂t

= δijλ
∂vk
∂k

+ µ

(
∂vi
∂j

+
∂vj
∂i

)
(2)

1. Discretise each parameter and variable onto a 3D cube.

2. Approximate derivatives by weighted sums.

3. Update each variable across a small ∆t, many times.

How to: Finite Difference Modelling

Model a given differential equation, e.g.:

∂vi
∂t

=
1

ρ

(
∂τij
∂j

)
(1)

∂τij
∂t

= δijλ
∂vk
∂k

+ µ

(
∂vi
∂j

+
∂vj
∂i

)
(2)

1. Discretise each parameter and variable onto a 3D cube.

2. Approximate derivatives by weighted sums.

3. Update each variable across a small ∆t, many times.

For example ...

∂

∂x
ui+ 1

2 ,j,k
≈

0.0038 ui−3,j,k

−0.0211 ui−2,j,k

+0.1049 ui−1,j,k

−1.2327 ui,j,k

+1.2327 ui+1,j,k

−0.1049 ui+2,j,k

+0.0211 ui+3,j,k

−0.0038 ui+4,j,k

x y

z

τ
n+ 1

2
xy = τ

n− 1
2

xy + µ∆t

(
∂

∂x
vny +

∂

∂y
vnx

)

Industry scale Finite Difference Modelling?

Model a seismic shot:

I Wavelengths down to 10m.

I 4m×4m×4m cells.

I 1000 × 500 × 2000 grid cells.

I 48GB of data.

I A consumer GPU typically fits 4GB-8GB of data.

Industry scale Finite Difference Modelling?

Model a seismic shot:

I Wavelengths down to 10m.

I 4m×4m×4m cells.

I 1000 × 500 × 2000 grid cells.

I 48GB of data.

I A consumer GPU typically fits 4GB-8GB of data.

Industry scale Finite Difference Modelling?

Model a seismic shot:

I Wavelengths down to 10m.

I 4m×4m×4m cells.

I 1000 × 500 × 2000 grid cells.

I 48GB of data.

I A consumer GPU typically fits 4GB-8GB of data.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Fitting data onto the GPU

x y

z

I Use overlapping, sliding model blocks.

The Memory Barrier – Data Transfer Slowdown

Theoretical Measured
Work Speed Time Speed Time

48Gb 16Gb/s 3s 5.3Gb/s 9.2s
5 · 1011flop 4 · 1012flop/s 0.1s (4 · 1011flop/s) (1.3s)

180Gb 288Gb/s 0.6s 140Gb/s 1.3s

I Need computational time ≥ IO time to hide tranfsers.

I This is satisfied when we do 7 time steps per pass.

I 2L(Q + 1) slices with differentiator length of 2L and Q steps.

I L = 8 and Q = 7 gives < 3GB for the reference model.

The Memory Barrier – Data Transfer Slowdown

Theoretical Measured
Work Speed Time Speed Time

48Gb 16Gb/s 3s 5.3Gb/s 9.2s
5 · 1011flop 4 · 1012flop/s 0.1s (4 · 1011flop/s) (1.3s)

180Gb 288Gb/s 0.6s 140Gb/s 1.3s

I Need computational time ≥ IO time to hide tranfsers.

I This is satisfied when we do 7 time steps per pass.

I 2L(Q + 1) slices with differentiator length of 2L and Q steps.

I L = 8 and Q = 7 gives < 3GB for the reference model.

The Memory Barrier – Data Transfer Slowdown

Theoretical Measured
Work Speed Time Speed Time

48Gb 16Gb/s 3s 5.3Gb/s 9.2s
5 · 1011flop 4 · 1012flop/s 0.1s (4 · 1011flop/s) (1.3s)

180Gb 288Gb/s 0.6s 140Gb/s 1.3s

I Need computational time ≥ IO time to hide tranfsers.

I This is satisfied when we do 7 time steps per pass.

I 2L(Q + 1) slices with differentiator length of 2L and Q steps.

I L = 8 and Q = 7 gives < 3GB for the reference model.

The Memory Barrier – Data Transfer Slowdown

Theoretical Measured
Work Speed Time Speed Time

48Gb 16Gb/s 3s 5.3Gb/s 9.2s
5 · 1011flop 4 · 1012flop/s 0.1s (4 · 1011flop/s) (1.3s)

180Gb 288Gb/s 0.6s 140Gb/s 1.3s

I Need computational time ≥ IO time to hide tranfsers.

I This is satisfied when we do 7 time steps per pass.

I 2L(Q + 1) slices with differentiator length of 2L and Q steps.

I L = 8 and Q = 7 gives < 3GB for the reference model.

The Memory Barrier – Data Transfer Slowdown

Theoretical Measured
Work Speed Time Speed Time

48Gb 16Gb/s 3s 5.3Gb/s 9.2s
5 · 1011flop 4 · 1012flop/s 0.1s (4 · 1011flop/s) (1.3s)

180Gb 288Gb/s 0.6s 140Gb/s 1.3s

I Need computational time ≥ IO time to hide tranfsers.

I This is satisfied when we do 7 time steps per pass.

I 2L(Q + 1) slices with differentiator length of 2L and Q steps.

I L = 8 and Q = 7 gives < 3GB for the reference model.

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

Breaking the Memory Barrier

stress
velocity

y

t

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

A small example from the Overthrust model

What is the running time?

... for the example model on a three year old consumer GPU
($700)?

I ≈ 15% slowdown compared to in-core.

I 1.46s per time step. 20000 time steps in 8 hours.

I In-house CPU code would use 6 weeks on a single core ...

I ... or 1 week in parallel on an 8-core CPU.

What is the running time?

... for the example model on a three year old consumer GPU
($700)?

I ≈ 15% slowdown compared to in-core.

I 1.46s per time step. 20000 time steps in 8 hours.

I In-house CPU code would use 6 weeks on a single core ...

I ... or 1 week in parallel on an 8-core CPU.

What is the running time?

... for the example model on a three year old consumer GPU
($700)?

I ≈ 15% slowdown compared to in-core.

I 1.46s per time step. 20000 time steps in 8 hours.

I In-house CPU code would use 6 weeks on a single core ...

I ... or 1 week in parallel on an 8-core CPU.

What is the running time?

... for the example model on a three year old consumer GPU
($700)?

I ≈ 15% slowdown compared to in-core.

I 1.46s per time step. 20000 time steps in 8 hours.

I In-house CPU code would use 6 weeks on a single core ...

I ... or 1 week in parallel on an 8-core CPU.

What is the running time?

... for the example model on a three year old consumer GPU
($700)?

I ≈ 15% slowdown compared to in-core.

I 1.46s per time step. 20000 time steps in 8 hours.

I In-house CPU code would use 6 weeks on a single core ...

I ... or 1 week in parallel on an 8-core CPU.

For your consideration

I GPUs favour computation-heavy, accurate numerical schemes.

I Computational cost proportional to λmin
∆x

4
.

I Shot-parallelism is easily exploited for migration and inversion.

I Arrange GPUs in a pipeline for a lower-level parallelism.

For your consideration

I GPUs favour computation-heavy, accurate numerical schemes.

I Computational cost proportional to λmin
∆x

4
.

I Shot-parallelism is easily exploited for migration and inversion.

I Arrange GPUs in a pipeline for a lower-level parallelism.

For your consideration

I GPUs favour computation-heavy, accurate numerical schemes.

I Computational cost proportional to λmin
∆x

4
.

I Shot-parallelism is easily exploited for migration and inversion.

I Arrange GPUs in a pipeline for a lower-level parallelism.

For your consideration

I GPUs favour computation-heavy, accurate numerical schemes.

I Computational cost proportional to λmin
∆x

4
.

I Shot-parallelism is easily exploited for migration and inversion.

I Arrange GPUs in a pipeline for a lower-level parallelism.

And the verdict is ...

The out-of-core implementation:

I Makes large-scale wave modelling feasible on a single GPU.

I Gives flexibility and good utilisation of the GPU hardware.

I Is easily adopted in a multi-GPU setting.

And the verdict is ...

The out-of-core implementation:

I Makes large-scale wave modelling feasible on a single GPU.

I Gives flexibility and good utilisation of the GPU hardware.

I Is easily adopted in a multi-GPU setting.

And the verdict is ...

The out-of-core implementation:

I Makes large-scale wave modelling feasible on a single GPU.

I Gives flexibility and good utilisation of the GPU hardware.

I Is easily adopted in a multi-GPU setting.

And the verdict is ...

The out-of-core implementation:

I Makes large-scale wave modelling feasible on a single GPU.

I Gives flexibility and good utilisation of the GPU hardware.

I Is easily adopted in a multi-GPU setting.

A big thanks to

I wish to acknowledge Statoil and the sponsors of the ROSE
consortium for funding my PhD and the Department of Petroleum
Engineering & Applied Geophysics for being a great place to work.

venstad@gmail.com

