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Background

e The applications of full waveform inversion (FWI) on
synthetic and field data the last decade have proved that
FWTI is a promising method for parameter model estimation

e The increase in computational power leads to an increase
in possible problem sizes and type of wave phenomena
included in the modeling and inversion

e Limited number of 3D applications in the literature
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Objectives

e Apply three dimensional elastic isotropic FWI on field
time-lapse data from the Sleipner area

e Use the inverted elastic models to obtain depth migration
seismic images of the area before and after ten years of
injection of COa.

e Investigate the migration path for the injected CO2 gas.
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Outline

e Theory
e Full waveform inversion
e Imaging work flow
e Results
e Baseline inversion
e Monitor inversion
e Seismic images

e Conclusions
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A quick overview of full waveform inversion
Overall goal

Find a parameter model from which it is possible to create
synthetic data that is close to some measured data

Define S(m) as the measure between synthetic and measured
data. The FWI is then the problem

arg min S(m)
m
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A quick overview of full waveform inversion
Overall goal
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data. The FWI is then the problem

arg min S(m)
m

Solved using an iterative method Start point
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my; model at iteration k
g, gradient of S(m) at iteration k
H; Hessian of S(m) at iteration k
ap  step length at iteration k
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Schematic view of FWI
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Time-lapse full waveform inversion

Goal

Use full waveform inversion to quantify changes in time for

parameters affecting wave propagation.

May be used
e as monitoring tool during the life-time of a reservoir
e to monitor injection of CO2 in CCS experiments

e quantify amount of injected COg

Conclusions
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Time-lapse full waveform inversion

Goal

Use full waveform inversion to quantify changes in time for

parameters affecting wave propagation.

Challenges

e Need to perform at least two inversions

e The method may introduce artifacts in the time-lapse
images due to for instance
e non-linearity
e ill-posedness
e data differences
e bad repeatability in the time-lapse data
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Seismic imaging work flow

‘ Baseline data ‘ ‘ Initial model ‘

‘ Baseline FWI ‘
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Seismic imaging work flow
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Results

Results: Sleipner data details

e Baseline dataset: 1994 survey
e 852 shots, 570840 data traces
e 1700 m offset
e Monitor dataset: 2006 survey
e 1180 shots, 1274400 data traces
e 1700 m offset
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Fold maps: left: baseline, right: monitor.
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Inversion strategy

e Invert for v,, and couple v, and p using empirical
relationships

e Invert sequentially using the frequency bands: 6-8Hz,
6-11Hz, 6-15Hz.

e Source signatures are estimated using FWI

e First, invert for baseline data to obtain a baseline elastic
model

e Second, use target-oriented FWI when inverting for the
monitor data
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Estimated source signatures
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Source signatures: top: baseline dataset, bottom: monitor dataset.

Left: 6-8 Hz, middle 6-11 Hz, right: 6-15 Hz.
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Baseline FWI: Vertical slice
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Baseline FWI: Vertical slice
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Baseline FWI: Data
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Comparison: left: 6-8 Hz, middle: 6-11 Hz, right: 6-15 Hz.



Theory Results Conclusions

Baseline migration: Vertical slice
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Baseline migration: Vertical slice

y (m)
2500 3500 4500 5500

Final inverted model



Theory Results

Conclusions

Baseline FWI: Horizontal slice
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Baseline FWI: Horizontal slice

Initial: left: seismic image, right: overlay.
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Baseline FWI: Horizontal slice

Final: left: seismic image, right: overlay.



Results

Monitor FWI: Vertical slice
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Monitor FWI: Vertical slice
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Monitor FWI: Vertical slice
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Migration: Vertical slice
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Close-up of gas cloud: top: baseline, bottom: monitor.
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Migration: Horizontal slice

Slice at z = 881.25m: left: baseline, middle: monitor, right: overlay
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Migration: Horizontal slice

Slice at z = 918.75m: left: baseline, middle: monitor, right: overlay
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Migration: Horizontal slice

Slice at z = 943.75m: left: baseline, middle: monitor, right: overlay
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Migration: Different migration models

Slice at z = 918.75m: left: baseline FWI model, right: monitor FWI model
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Conclusions

FWI improves the elastic models and matches the field data

FWI produces models that can improve the resolution and
focusing of seismic images

Injected gas at Sleipner has migrated into structures that
are visible on the baseline images

The gas has migrated upwards through a fault
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