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W I TOffset Extrapolation – Partial Stacks



W I TApplication Partial Stacks

Pre-stack data enhancement and regularization
(SIGSBEE):
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W I TApplication Partial Stacks

Pre-stack data enhancement and regularization (low fold
field data):
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W I TDecomposition Principle

tFO(xs, xg, tFO
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W I TFO Prediction for Diffractions

Decoupling of diffraction raypaths allows to obtain FO
diffraction attributes directly from ZO results by

αs = αs
0

αg = αg
0

Rs = Rs
NIP

Rg = Rg
NIP

tFO
0 =

(
tZO,s
0 + tZO,g

0

)
/2

These relations are exact for diffractions in arbitrary media
provided reciprocity



W I TSimple Data Example

Partial CRS (offsets 500 to 4000 m):
CMP Number

FO prediction (offsets 500 to 4000 m):
CMP Number



W I TField Data: Stack (FO 1000 m)
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W I TField Data: Semblance (FO 1000 m)

2

3

4

T
W

T
 [

s]

2800 3000
CMP Number

partial CRS

0

0.2

0.4

0.6

0.8

2

3

4
T

W
T

 [
s]

2800 3000
CMP Number

CO prediction

0

0.2

0.4

0.6

0.8



W I TField data: αs [
◦] (FO 1000 m)
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W I TSeparation Without Conflicting Dips



W I TSeparation With Conflicting Dips
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