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Uncertainty – Error propagation
Shallow water
Up-down decomposition
Anisotropy



Uncertainty – Error propagation
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Propagation of uncertainty.
Error propagation

𝑓 𝑥, 𝑦 = 𝑓 𝑥0, 𝑦0 +
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑥

𝑥 − 𝑥0 +
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑦

𝑦 − 𝑦0

Example with two variables
Taylor to first order:

𝛿𝑓 𝑥, 𝑦 =
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑥

𝛿𝑥 +
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑦

𝛿𝑦

𝑓 𝑥, 𝑦 − 𝑓 𝑥0, 𝑦0 =
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑥

𝑥 − 𝑥0 +
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑦

𝑦 − 𝑦0

Or

Rewrite as:

Variation in function 𝑓 as a function of variations in parameters 𝑥 and 𝑦. 
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Have:

𝛿𝑓 𝑥, 𝑦 =
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑥

𝛿𝑥 +
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑦

𝛿𝑦

Suppose we do N measurements of 𝑓 𝑥, 𝑦 . For the n’th measurement: 

𝛿𝑓𝑛 =
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑥

𝛿𝑥𝑛 +
𝜕𝑓 𝑥0, 𝑦0
𝜕𝑦

𝛿𝑦𝑛

𝛿𝑓𝑛
2 =

𝜕𝑓

𝜕𝑥

2
𝛿𝑥𝑛
2 +

𝜕𝑓

𝜕𝑦

2
𝛿𝑦𝑛
2 + 2

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝑐𝑜𝑣(𝑥𝑛, 𝑦𝑛)
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 𝑛=1
𝑁 𝛿𝑓𝑛

2

𝑁
=
𝜕𝑓

𝜕𝑥

2
 𝑛=1
𝑁 𝛿𝑥𝑛

2

𝑁
+
𝜕𝑓

𝜕𝑦

2
 𝑛=1
𝑁 𝛿𝑦𝑛

2

𝑁

𝛿𝑓𝑛
2 =

𝜕𝑓

𝜕𝑥

2
𝛿𝑥𝑛
2 +

𝜕𝑓

𝜕𝑦

2
𝛿𝑦𝑛
2 + 2

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝑐𝑜𝑣(𝑥𝑛, 𝑦𝑛)

If independent variables:

𝑠𝑓
2 =
𝜕𝑓

𝜕𝑥

2

𝑠𝑥
2 +
𝜕𝑓

𝜕𝑦

2

𝑠𝑦
2

In terms of standard deviations:

Will use notation of the form: 𝛿𝑓2 =
𝜕𝑓

𝜕𝑥

2

𝛿𝑥2 +
𝜕𝑓

𝜕𝑦

2

𝛿𝑦2

Have:
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𝛿𝑓 =
𝜕𝑓

𝜕𝑥

2

𝛿𝑥2 +
𝜕𝑓

𝜕𝑦

2

𝛿𝑦2

Have

The expected uncertainty/error in maesuring 𝑓 due to uncertainty/error in 𝑥 and 𝑦 : 

𝛿𝑓2 =
𝜕𝑓

𝜕𝑥

2

𝛿𝑥2 +
𝜕𝑓

𝜕𝑦

2

𝛿𝑦2

𝛿𝑓(𝒙) =  

𝑖

|
𝜕𝑓(𝒙)

𝜕𝑥𝑖
|2 |𝛿𝑥𝑖 |

2

Generalized:
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Example

Speed trap: 
Measured fixed distance and interval time measurement

𝑣 =
𝑠2 − 𝑠1
𝑡2 − 𝑡1

=
𝑠

𝑡
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The distance from A to B is 𝑠 = 100m but there is 
an uncertainty related to measuring the distance 𝑠 : 𝛿𝑠

A

B

Likewise, there is an uncertainty related to measuring
the time it takes to drive from A to B: 𝛿𝑡

The velocity is: 𝑣(𝑠, 𝑡) =
𝑠

𝑡

The uncertainty in the velocity measurement is: 𝛿𝑣 =
𝜕𝑣

𝜕𝑠

2

𝛿𝑠2 +
𝜕𝑣

𝜕𝑡

2

𝛿𝑡2

𝛿𝑣 =
1

𝑡

2

𝛿𝑠2 +
𝑠

𝑡2

2

𝛿𝑡2Explicitly:
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𝛿𝑣 =
1

𝑡

2

𝛿𝑠2 +
𝑠

𝑡2

2

𝛿𝑡2

Have

𝑣 =
𝑠

𝑡
Use to obtain:

𝛿𝑣

𝑣
=
𝛿𝑠

𝑠

2

+
𝛿𝑡

𝑡

2

Suppose the task is to measure velocities up to 110 km/h with accuracy 1.1 km/h 
or better.

For the moment, assume perfect timing (𝛿𝑡 = 0). Sufficient accuracy if:

𝛿𝑣

𝑣
≥
𝛿𝑠

𝑠
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𝛿𝑠

𝑠
≤ 0.01

Have for perfect time measurements:

If the distance 𝑠 = 100m : 𝛿𝑠 ≤ 1m

Assumption:   𝛿𝑠 ≈ 0.1m with laser

𝛿𝑣

𝑣
=
𝛿𝑠

𝑠

2

+
𝛿𝑡

𝑡

2

0.01 ≥ 0.001 2 +
𝛿𝑡

𝑡

2

𝛿𝑡

𝑡
< 0.01

Obtain

Good accuracy on distance measurement implies that allmost all 
potential uncertainty is related to time measurement
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𝛿𝑡

𝑡
< 0.01

Small time intervals from A to B will give largest 
uncertainty. This is for highest velocity.

Have 110 km/h ≈ 30 m/s. Expected shortest time is 
𝑡 = 3.333 s 

Acceptable uncertainty in time measurement, 
𝛿𝑡, is 0.033 s or 33msec

Manual timing with stopwatch or electronic timing?

Have
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Uncertainty in CSEM measurements

𝐸𝑥 𝒙𝑟 𝒙𝑠 = 𝐺𝑥𝑛
𝐸𝐽 𝒙𝑟 𝒙𝑠 𝐿𝐽𝑛𝛼 + 𝑁

Assume observed inline electric field can be approximated by:

𝐺𝑥𝑛
𝐸𝐽 𝒙𝑟 𝒙𝑠 : Electric field Green’s function. Often named «The Earth’s impulse response»

Here it serves the role as an ideal response without errors or uncertainty.

𝐿: Length of electric dipole

𝐽𝑛: Strength of transmitted current

𝛼: Receiver calibration factor, nominal value is 1.0

𝑁: Additive noise. Can be receiver self noise, MT noise, swell noise, motion noise, ...
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Receiver:
- Position
- Direction
- Calibration
- Timing
- Self noise
- Motion noise - turbulence
- Swell noise
- MT noise (Can be estimated/partly removed)

Transmitter:
- Front electrode position
- Aft electrode position
- Current measurement
- Timing

Effective length, feathering, pitch

Uncertainty
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𝐸𝑥 𝒙𝑟 𝒙𝑠 = 𝐺𝑥𝑛
𝐸𝐽 𝒙𝑟 𝒙𝑠 𝐿𝐽𝑛𝛼 + 𝑁

Have

For simplicity of derivation we assume a plane layer earth 𝒙 = 𝒙𝑟 − 𝒙𝑠

𝐸𝑥(𝒙) = 𝐺𝑥𝑛
𝐸𝐽(𝒙)𝐿𝐽𝑛𝛼 + 𝑁

𝐽𝑥 = 𝐽𝑐𝑜𝑠 𝜑 cos(𝜃)

𝐽𝑦 = 𝐽𝑠𝑖𝑛 𝜑 cos(𝜃)

𝐽𝑧 = 𝐽sin(𝜃)

For the source components
𝑥

𝑦

𝑧

𝜃
𝜑

Perfect inline transmitter give: 𝐽𝑥= 𝐽, 𝐽𝑦= 0, 𝐽𝑧 = 0

𝐸𝑥(𝒙) → 𝐸𝑥(𝒑) 𝒑 = [𝒙, 𝛼, 𝐽, 𝐿, 𝜃, 𝜑, 𝑁]𝑇

Nominal 𝜑 = 0, 𝜃 = 0
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𝛿𝑓(𝒙) =  

𝑖

|
𝜕𝑓(𝒙)

𝜕𝑥𝑖
|2 |𝛿𝑥𝑖 |

2

Have derived

For inline electromagnetic field:

𝛿𝐸𝑥(𝒑) =  

𝑖

|
𝜕𝐸𝑥(𝒑)

𝜕𝑝𝑖
|2 |𝛿𝑝𝑖 |

2

𝒑 = [𝒙, 𝛼, 𝐽, 𝐿, 𝜃, 𝜑, 𝑁]𝑇

𝐸𝑥(𝒑) = 𝐺𝑥𝑛
𝐸𝐽(𝒙)𝐿𝐽𝑛𝛼 + 𝑁

For simplicity of notation: 𝐷 = 𝐿𝐽𝛼
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Next step is to carry out calculation of partial derivatives with respect to parameter vector

𝐸𝑥(𝒑) = 𝐺𝑥𝑛
𝐸𝐽(𝒙)𝐿𝐽𝑛𝛼 + 𝑁 𝒑 = [𝒙, 𝛼, 𝐽, 𝐿, 𝜃, 𝜑, 𝑁]𝑇

Spatial coordinates:

𝜕𝑥𝐸𝑥 𝒑 = 𝜕𝑥𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷

𝐷 = 𝐿𝐽𝛼

𝜕𝑦𝐸𝑥 𝒑 = 0

𝜕𝑧𝐸𝑥 𝒑 = 𝜕𝑧𝐺𝑥𝑥
𝐸𝐽
𝒙 𝐷

Directional coordinates:

𝜕𝜑𝐸𝑥 𝒑 = 0

𝐽𝑥 = 𝐽𝑐𝑜𝑠 𝜑 cos(𝜃)

𝐽𝑦 = 𝐽𝑠𝑖𝑛 𝜑 cos(𝜃)

𝐽𝑧 = 𝐽sin(𝜃)

𝜕𝜃𝐸𝑥 𝒑 = 𝐺𝑥𝑧
𝐸𝐽 𝒙 𝐷

(𝐺𝑥𝑦= 0)
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Next step is to carry out calculation of partial derivatives with respect to parameter vector

𝐸𝑥(𝒑) = 𝐺𝑥𝑛
𝐸𝐽(𝒙)𝐿𝐽𝑛𝛼 + 𝑁 𝒑 = [𝒙, 𝛼, 𝐽, 𝐿, 𝜃, 𝜑, 𝑁]𝑇

Dipole moment-receiver calibration:

𝜕𝐿𝐸𝑥 𝒑 = 𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷

1

𝐿

𝐷 = 𝐿𝐽𝛼

Additive noise:

𝜕𝐽𝐸𝑥 𝒑 = 𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷

1

𝐽

𝜕𝛼𝐸𝑥 𝒑 = 𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷

1

𝛼

𝜕𝑁𝐸𝑥 𝒑 = 1
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Partial uncertainties

𝜕𝑥𝐸𝑥 𝒑 = 𝜕𝑥𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝐸𝑥 X = |𝜕𝑥𝐺𝑥𝑥

𝐸𝐽 𝒙 𝐷 𝛿𝑥|

𝜕𝑧𝐸𝑥 𝒑 = 𝜕𝑧𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝐸𝑥 𝑍 = |𝜕𝑧𝐺𝑥𝑥

𝐸𝐽 𝒙 𝐷 𝛿𝑧|

𝜕𝐿𝐸𝑥 𝒑 = 𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷

1

𝐿

𝜕𝐽𝐸𝑥 𝒑 = 𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷

1

𝐽

𝜕𝛼𝐸𝑥 𝒑 = 𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷

1

𝛼

𝛿𝐸𝑥 C = |𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷|

𝛿𝐿

𝐿

2

+
𝛿𝐽

𝐽

2

+
𝛿𝛼

𝛼

2

𝜕𝜃𝐸𝑥 𝒑 = 𝐺𝑥𝑧
𝐸𝐽 𝒙 𝐷 𝛿𝐸𝑥 θ = |𝐺𝑥𝑧

𝐸𝐽 𝒙 𝐷 𝛿𝜃|

𝜕𝑁𝐸𝑥 𝒑 = 1 𝛿𝐸𝑥 N = |∆𝑁|
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𝛿𝐸𝑥 X = |𝜕𝑥𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝑥|

𝛿𝐸𝑥 Z = |𝜕𝑧𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝑧|

𝛿𝐸𝑥 C = |𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷|

𝛿𝐿

𝐿

2

+
𝛿𝐽

𝐽

2

+
𝛿𝛼

𝛼

2

Have

𝛿𝐸𝑥 θ = |𝐺𝑥𝑧
𝐸𝐽 𝒙 𝐷 𝛿𝜃|

|𝛿𝐸𝑥(M)|
2 = |𝛿𝐸𝑥(X)|

2 + |𝛿𝐸𝑥(Z)|
2 + |𝛿𝐸𝑥(C)|

2 + |𝛿𝐸𝑥(θ)|
2

Collect all terms that scales with Green’s functions and dipole moment:

𝛿𝐸𝑥 N = |∆𝑁|

The additive term:

𝛿𝐸𝑥(𝒑) =  

𝑖

|
𝜕𝐸𝑥(𝒑)

𝜕𝑝𝑖
|2 |𝛿𝑝𝑖 |

2

The total uncertainty:

𝛿𝐸𝑥(𝒑) = |𝛿𝐸𝑥(M)|
2 + |𝛿𝐸𝑥(N)|

2
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𝛿𝐸𝑥 X = |𝜕𝑥𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝑥|

𝛿𝐸𝑥 Z = |𝜕𝑧𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝑧|

𝛿𝐸𝑥 C = |𝐺𝑥𝑥
𝐸𝐽
𝒙 𝐷|

𝛿𝐿

𝐿

2

+
𝛿𝐽

𝐽

2

+
𝛿𝛼

𝛼

2

Plot color coding

𝛿𝐸𝑥 θ = |𝐺𝑥𝑧
𝐸𝐽
𝒙 𝐷 𝛿𝜃|

𝛿𝐸𝑥 N = |∆𝑁|

𝛿𝐸𝑥(𝒑) = |𝛿𝐸𝑥(M)|
2 + |𝛿𝐸𝑥(N)|

2



Scattered fields

Misfit in first iteration:

∆𝐸𝑥
𝑛 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
𝑛(𝒙, 𝜔)|

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|

Assume that 67 percent (2/3) of transverse resistance recovered at 
iteration n:

Resistivity Resistivity

D
ep

th

D
ep

th

True model
Start model
Partially recovered model after n iterations



Inversion

L1 inversion data misfit kernel:

Ψ𝑛(𝒑) =
∆𝐸𝑥
𝑛 𝒑

𝛿𝐸𝑥 𝒑

Inspect ratio of residual misfit field to uncertainty:
Hard to extract more resistivity information if residual data misfit is of same 
magnitude as uncertainty. Critical value for Ψ is 1. Further iterations make 
sense if  Ψ larger than unity 

Usually L2 inversion data misfit kernels used:

𝜀 =  

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

∆𝐸𝑥
𝑛

𝛿𝐸𝑥

2



Resistivity model

0.3125        0.3125

3.0              1.5

3.0              1.5

4.0              2.0

0.3125        0.3125

3.0              1.5

50.0           50.0

4.0               2.0

50 m

2000 m

2000 m – 5000 m

V H  V H 
Resistivity

D
ep

th

f=0.25 Hz



Examples

Noise: 𝛿𝐸𝑥 N
Misfit: ∆𝐸𝑥 𝒑

𝛿𝐸𝑥 N = |∆𝑁|

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|



Examples

Calibration: 𝛿𝐸𝑥 C

Noise: 𝛿𝐸𝑥 N
Misfit: ∆𝐸𝑥 𝒑

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|

𝛿𝐸𝑥 C = |𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷|

𝛿𝐿

𝐿

2

+
𝛿𝐽

𝐽

2

+
𝛿𝛼

𝛼

2



Examples

Inline: 𝛿𝐸𝑥 X

Calibration: 𝛿𝐸𝑥 C

Noise: 𝛿𝐸𝑥 N
Misfit: ∆𝐸𝑥 𝒑

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|

𝛿𝐸𝑥 X = |𝜕𝑥𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝑥|



Examples

Inline: 𝛿𝐸𝑥 X
Depth: 𝛿𝐸𝑥 Z

Calibration: 𝛿𝐸𝑥 C

Noise: 𝛿𝐸𝑥 N
Misfit: ∆𝐸𝑥 𝒑

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|

𝛿𝐸𝑥 Z = |𝜕𝑧𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷 𝛿𝑧|



Examples

Inline: 𝛿𝐸𝑥 X
Depth: 𝛿𝐸𝑥𝑍

Calibration: 𝛿𝐸𝑥 C

Tilt: 𝛿𝐸𝑥 θ

Noise: 𝛿𝐸𝑥 N
Misfit: ∆𝐸𝑥 𝒑

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|

𝛿𝐸𝑥 θ = |𝐺𝑥𝑧
𝐸𝐽 𝒙 𝐷 𝛿𝜃|
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𝛿𝐸𝑥 C = |𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷|

𝛿𝐿

𝐿

2

+
𝛿𝐽

𝐽

2

+
𝛿𝛼

𝛼

2

Assume in the following:

𝛿𝐿

𝐿
=
𝛿𝐽

𝐽
=
𝛿𝛼

𝛼

For

𝛿𝐸𝑥 C = |𝐺𝑥𝑥
𝐸𝐽 𝒙 𝐷|

𝛿𝐴

𝐴

𝛿𝐴

𝐴
= 3
𝛿𝐿

𝐿
≈ 1.7
𝛿𝐿

𝐿

For example
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Inline: 𝛿𝐸𝑥 X
Depth: 𝛿𝐸𝑥 Z

Calibration: 𝛿𝐸𝑥 C

Tilt: 𝛿𝐸𝑥 θ

Noise: 𝛿𝐸𝑥 N

Total: 𝛿𝐸𝑥(𝒑)

Misfit: ∆𝐸𝑥 𝒑

Ψ0(𝒑)

Ψ𝑛(𝒑)

∆𝐸𝑥
0

∆𝐸𝑥
𝑛

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|

∆𝐸𝑥
𝑛 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
𝑛(𝒙, 𝜔)|

𝛿𝐸𝑥(𝒑) = |𝛿𝐸𝑥(M)|
2 + |𝛿𝐸𝑥(N)|

2
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Ψ0(𝒑)

Ψ𝑛(𝒑)

∆𝐸𝑥
0

∆𝐸𝑥
𝑛

𝛿𝑥 = 15m

𝛿𝑧 = 5m

𝛿𝜃 = 1°

Typical accuracy as of 2010
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Target down

𝛿𝑥 = 15m

𝛿𝑧 = 5m

𝛿𝜃 = 1°

Typical accuracy as of 2010
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𝛿𝑥 = 15m

𝛿𝑧 = 5m

𝛿𝜃 = 1°

Target down

Receiver noise 10−11 V/m 
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𝛿𝑥 = 15m

𝛿𝑧 = 5m

𝛿𝜃 = 1°

Target down

Transmitter current  10 kA

Largest contribution

Receiver noise 10−11 V/m 
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𝛿𝑥 = 15m

𝛿𝑧 = 5m

𝛿𝜃 = 1°

Target fixed

Largest contribution

Better calibration and 𝛿𝐿

Receiver noise 10−11 V/m 

Transmitter current  10 kA
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𝛿𝑥 = 5m

𝛿𝑧 = 2m

𝛿𝜃 = 1°

Receiver noise 10−11 V/m 

Transmitter current  10 kA

Better calibration and 𝛿𝐿

Better navigation 𝑥 & z

Target fixed

Largest contribution
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𝛿𝑥 = 5m

𝛿𝑧 = 2m

𝛿𝜃 = 0.4°

Target down

Receiver noise 10−11 V/m 

Transmitter current  10 kA

Better calibration and 𝛿𝐿

Better navigation 𝑥 & z

Better navigation 𝜃
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𝛿𝑥 = 5m

𝛿𝑧 = 2m

𝛿𝜃 = 0.4°

Target down

Receiver noise 10−11 V/m 

Transmitter current  10 kA

Better calibration and 𝛿𝐿

Better navigation 𝑥 & z

Better navigation 𝜃

Increased transverse resistance
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𝛿𝑥 = 1m

𝛿𝑧 = 1m

𝛿𝜃 = 0°

Shallow water – 40 m

Receiver noise 10−9 V/m 

Problem is MT – swell – motion noise



41

|𝛿𝐸𝑥(M)|
2 = |𝛿𝐸𝑥(X)|

2 + |𝛿𝐸𝑥(Z)|
2 + |𝛿𝐸𝑥(C)|

2 + |𝛿𝐸𝑥(θ)|
2

𝛿𝐸𝑥(𝒑) = |𝛿𝐸𝑥(M)|
2 + |𝛿𝐸𝑥(N)|

2

∆𝐸𝑥
0 𝒑 = |𝐸𝑥

𝑂𝑏𝑠(𝒑) − 𝐸𝑥
0(𝒙, 𝜔)|

𝛾 𝑥 =
𝛿𝐸𝑥(𝑥|M)

𝐸𝑥
𝑂𝑏𝑠(𝑥)

Have

Let 𝑥 here mean source-receiver offset

Can write:

𝛿𝐸𝑥(𝑥) = |𝛾(𝑥)𝐸𝑥
𝑂𝑏𝑠(𝑥)|2 + Δ𝑁2

How does 𝛾 behave as a function of source-receiver offset? 
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𝛾 𝑥 =
𝛿𝐸𝑥(𝑥|M)

𝐸𝑥
𝑂𝑏𝑠(𝑥)

𝛾 𝑥 =
𝛿𝐸𝑥(𝑥|M)

𝐸𝑥
𝑂𝑏𝑠(𝑥)

Equipment 2010

Equipment 201?

𝛿𝐸𝑥(𝑥) ≈ 𝛾
2|𝐸𝑥
𝑂𝑏𝑠(𝑥)|2 + Δ𝑁2

𝛾 ≈ 0.03

𝛾 ≈ 0.01

Quick and dirty estimate of uncertainty:

Even dirtier estimate of uncertainty:

𝛿𝐸𝑥 𝑥 ≈ 𝛾|𝐸𝑥
𝑂𝑏𝑠 𝑥 | + Δ𝑁



Frequency vs. Offset

In order to find the best fitting range of frequencies for a survey it is important to find a waveform with 
frequencies at and around the peak sensitivity for a given target.

At the same time one should keep in mind that different frequencies have different penetration and 
resolution. 

25 Ωm @ 3250m 50 Ωm @ 3250m 70 Ωm @ 3250m



Shallow water



0 – 100m

150 – 400m

1500 – 2000m

Somewhere on shore

Somewhere off shore





2 Ohm-m

0.3 Ohm-m

50 Ohm-m

2 Ohm-m

All examples are for 0.25 Hz
Results not particular for that frequency



A

B

∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠 = 𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,A) - 𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,B)

𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,A) = 𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,B) + ∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠

Full waveform modeling of the 
scattered field from a thin resistor



𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,B) 



∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠

𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,B) 

A

B



𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,B) 

∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠

Shallow water CSEM very difficult  if scattered field 
same amplitude for all waterdepths 



∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠

The amplitude of the scattered field increase significantly 
in waterdepths less than 300 m



Resistor burial depth 1000 m

Resistor burial depth 3000 m

Enhanced scattered-field effect is not 
restricted to a particular burial depth 
or frequency

Scattered fields normalized on the 2000 m
waterdepth case



Scattered field of same 
magnitude as background
field for a fairly large offset
interval.

Marine CSEM in 
shallow water feasible.

𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,B) 

∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠



Magnitude of airwave increase as waterdepth is reduced 

The response from a thin resistive layer increase as waterdepth is reduced

The increase in the response from a thin resistive layer is sufficiently strong
to make marine CSEM in shallow water feasible



𝐸𝑥𝑥
𝑂𝑏𝑠(𝒙𝑟|𝒙𝑠; L, J, β, 𝑁, … .) ≈ 𝐺𝑥𝑥(𝒙𝑟|𝒙𝑠) LJ β + N

δ𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠 = 𝛼
2|𝐸𝑥𝑥
𝑂𝑏𝑠(𝒙𝑟|𝒙𝑠)|

2 + 𝜂 2

Mittet and Morten 2012:
Error propagation analysis to estimate uncertainty in observation

δ𝐸𝑥𝑥
𝑂𝑏𝑠 𝒑 =  𝑖 |

𝜕𝐸𝑥𝑥
𝑂𝑏𝑠 𝒑

𝜕𝑝𝑖
|2|∆𝑝𝑖|

2

Contributions to uncertainty are both multiplicative and additive

For model used here we find that multplicative contributions approximately
constant with offset  (Offset > 2 km)

Simplified model for the uncertainty in the observed data:



Ψ 𝒙𝑟|𝒙𝑠 =
∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠

2

𝛿𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠
2

Uncertainty in the observed field:

Ψ 𝒙𝑟|𝒙𝑠 =
∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠
δ𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠

L1 inversion kernel at first iteration:

L2 inversion kernel at first iteration:

(Tarantola, 1984)

∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠 = 𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,A) - 𝐸𝑥𝑥(𝒙𝑟|𝒙𝑠,B)

Scattered (≈misfit) field from full waveform modeling:

δ𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠 = 𝛼
2|𝐸𝑥𝑥
𝑂𝑏𝑠(𝒙𝑟|𝒙𝑠)|

2 + 𝜂 2



Noise models

𝛼 = 0.03

𝜂 2000 m = 5 × 10−16
V

Am2

𝜂 300 m = 3 × 10−15
V

Am2

𝜂 100 m = 6 × 10−15
V

Am2

𝜂 40 m = 1.5 × 10−14
V

Am2

L=270 m
I=1250 A

Based on real data

Based on error propagation analysis

δ𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠 = 𝛼
2|𝐸𝑥𝑥
𝑂𝑏𝑠(𝒙𝑟|𝒙𝑠)|

2|) + 𝜂 2



Ψ 𝒙𝑟|𝒙𝑠 =
∆𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠
δ𝐸𝑥𝑥 𝒙𝑟|𝒙𝑠



40 m
100 m
300 m
500 m
800 m

1000 m
1500 m
2000 m

For given frequency (0.25 Hz)
Airwave «kick in» at approx 800 m ->
Increase in multiplicative term and hence
reduced sensitivity 



40 m
100 m
300 m
500 m
800 m

1000 m
1500 m
2000 m

For given frequency (0.25 Hz)
Increase in scattered field «kick in» at approx. 400 m
Increase in sensitivity



40 m
100 m
300 m
500 m
800 m

1000 m
1500 m
2000 m

From 2000 m – 400 m:
Increase in airwave 
and additive noise give 
reduced sensitivity 

From 400 m – 40 m :
Increase in scattered 
field balance the airwave
effect



Up-down decomposition



Before up-down decomposition



After up-down decomposition
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The purpose of U-D decomposition is to reduce the contribution from
«large amplitude» downgoing field components like the airwave and 
MT fields 

After decomposition further processing is performed on the upgoing 
field that has interacted with the subsurface 
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Maxwell equations for 1D MT 

Obtain two sets of equations that describe two different polarizations:

𝐽𝑥
𝑠 + 𝜎𝐸𝑥
𝐽𝑦
𝑠 + 𝜎𝐸𝑦
0 + 𝜎𝐸𝑧

=
−𝜕𝑧𝐻𝑦
𝜕𝑧𝐻𝑥
0

𝑖𝜔𝜇0𝐻𝑥
𝑖𝜔𝜇0𝐻𝑦
𝑖𝜔𝜇0𝐻𝑧

=
−𝜕𝑧𝐸𝑦
𝜕𝑧𝐸𝑥
0

𝜕𝑧𝐻𝑦+𝜎𝐸𝑥=-𝐽𝑥
𝑠

𝜕𝑧𝐸𝑥-𝑖𝜔𝜇0𝐻𝑦=0

𝜕𝑧𝐻𝑥+𝜎𝐸𝑦=-𝐽𝑦
𝑠

𝜕𝑧𝐸𝑦 + 𝑖𝜔𝜇0𝐻𝑥=0

𝜕𝑧
2𝐸𝑥+iω𝜇0𝜎𝐸𝑥=- iω𝜇0 𝐽𝑥

𝑠 𝜕𝑧
2𝐸𝑦+iω𝜇0𝜎𝐸𝑦=- iω𝜇0 𝐽𝑦

𝑠

Equations for both polarizations :

Sufficient to concentrate on x-polarization to understand the physics.
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𝜕𝑧𝐸𝑥-𝑖𝜔𝜇0𝐻𝑦 = 0

𝐸𝑥
𝐷 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑎 , 𝜔)𝑒

𝑖𝑘𝜔 (𝑧−𝑧𝑎) 𝐸𝑥
𝑈 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑏, 𝜔)𝑒

𝑖 𝑘𝜔(𝑧𝑏−𝑧)

𝑧𝑎

𝑧𝑏

𝑧

𝐸𝑥
𝐷 𝑧, 𝜔

𝐸𝑥
𝑈 𝑧, 𝜔

𝑘𝜔
2 = 𝑖ω𝜇0𝜎

𝑘𝜔 = 𝑖ω𝜇0𝜎
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𝜕𝑧𝐸𝑥-𝑖𝜔𝜇0𝐻𝑦 = 0

𝐸𝑥
𝐷 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑎 , 𝜔)𝑒

𝑖𝑘𝜔 (𝑧−𝑧𝑎) 𝐸𝑥
𝑈 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑏, 𝜔)𝑒

𝑖 𝑘𝜔(𝑧𝑏−𝑧)

𝑧𝑎

𝑧𝑏

𝑧

𝐸𝑥
𝐷 𝑧, 𝜔

𝐸𝑥
𝑈 𝑧, 𝜔

𝜕𝑧𝐸𝑥 = 𝑖𝜔𝜇0𝐻𝑦Have in general:

𝑘𝜔
2 = 𝑖ω𝜇0𝜎

𝑘𝜔 = 𝑖ω𝜇0𝜎
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𝜕𝑧𝐸𝑥-𝑖𝜔𝜇0𝐻𝑦 = 0

𝐸𝑥
𝐷 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑎 , 𝜔)𝑒

𝑖𝑘𝜔 (𝑧−𝑧𝑎) 𝐸𝑥
𝑈 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑏, 𝜔)𝑒

𝑖 𝑘𝜔(𝑧𝑏−𝑧)

𝑧𝑎

𝑧𝑏

𝑧

𝐸𝑥
𝐷 𝑧, 𝜔

𝐸𝑥
𝑈 𝑧, 𝜔

𝜕𝑧𝐸𝑥 = 𝑖𝜔𝜇0𝐻𝑦Have in general:

Assume downgoing field only at 𝑧:

𝜕𝑧𝐸𝑥
𝐷(𝑧, 𝜔) = 𝑖𝜔𝜇0𝐻𝑦

𝐷(𝑧, 𝜔)

𝐸𝑥
𝐷(𝑧, 𝜔) =

𝜔𝜇0

𝑘𝜔
𝐻𝑦
𝐷(𝑧, 𝜔)

𝑘𝜔
2 = 𝑖ω𝜇0𝜎

𝑘𝜔 = 𝑖ω𝜇0𝜎

𝐸𝑥
𝐷(𝑧, 𝜔) =

𝜔𝜇0

𝑖ω𝜇0𝜎
𝐻𝑦
𝐷(𝑧, 𝜔)

𝐸𝑥
𝐷(𝑧, 𝜔) = 𝑍𝐻𝑦

𝐷(𝑧, 𝜔)
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𝜕𝑧𝐸𝑥-𝑖𝜔𝜇0𝐻𝑦 = 0

𝐸𝑥
𝐷 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑎 , 𝜔)𝑒

𝑖𝑘𝜔 (𝑧−𝑧𝑎) 𝐸𝑥
𝑈 𝑧, 𝜔 = 𝐸𝑥(𝑧𝑏, 𝜔)𝑒

𝑖 𝑘𝜔(𝑧𝑏−𝑧)

𝑧𝑎

𝑧𝑏

𝑧

𝐸𝑥
𝐷 𝑧, 𝜔

𝐸𝑥
𝑈 𝑧, 𝜔

𝜕𝑧𝐸𝑥 = 𝑖𝜔𝜇0𝐻𝑦Have in general:

Assume upgoing field only at 𝑧:

𝜕𝑧𝐸𝑥
𝑈(𝑧, 𝜔) = 𝑖𝜔𝜇0𝐻𝑦

𝑈(𝑧, 𝜔)

𝐸𝑥
𝑈 𝑧, 𝜔 = −

𝜔𝜇0

𝑘𝜔
𝐻𝑦
𝑈(𝑧, 𝜔)

𝑘𝜔
2 = 𝑖ω𝜇0𝜎

𝑘𝜔 = 𝑖ω𝜇0𝜎

𝐸𝑥
𝑈 𝑧, 𝜔 = −

𝜔𝜇0

𝑖ω𝜇0𝜎
𝐻𝑦
𝑈(𝑧, 𝜔)

𝐸𝑥
𝑈 𝑧, 𝜔 = −𝑍𝐻𝑦

𝑈(𝑧, 𝜔)
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Characteristic impedance:

Z =
𝜔𝜇0

𝑖ω𝜇0𝜎

Z = −𝑖𝜔𝜇0𝜌

Characteristic impedance is a medium property and is completely 
determined by the medium resistivity (or conductivity).

Must not be confused by the expression for field impedance 𝑍𝑥𝑦 used 

in MT processing:

𝑍𝑥𝑦 =
𝐸𝑥
𝐻𝑦
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𝐸𝑥
𝐷(𝑧, 𝜔) = 𝑍𝐻𝑦

𝐷(𝑧, 𝜔)

𝐸𝑥
𝑈 𝑧, 𝜔 = −𝑍𝐻𝑦

𝑈(𝑧, 𝜔)

𝐸𝑥 𝑧, 𝜔 = 𝐸𝑥
𝐷 𝑧, 𝜔 + 𝐸𝑥

𝑈 𝑧, 𝜔

𝐻𝑦 𝑧, 𝜔 = 𝐻𝑦
𝐷 𝑧, 𝜔 + 𝐻𝑦

𝑈 𝑧, 𝜔

𝐸𝑥
𝐷(𝑧, 𝜔) = 𝑍𝐻𝑦

𝐷(𝑧, 𝜔) 𝐸𝑥 𝑧, 𝜔 − 𝐸𝑥
𝑈(𝑧, 𝜔) = 𝑍𝐻𝑦 𝑧, 𝜔 − 𝑍𝐻𝑦

𝑈(𝑧, 𝜔)

𝐸𝑥 𝑧, 𝜔 − 𝐸𝑥
𝑈(𝑧, 𝜔) = 𝑍𝐻𝑦 𝑧, 𝜔 + 𝐸𝑥

𝑈(𝑧, 𝜔)

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍𝐻𝑦 𝑧, 𝜔 ]

We measure the total fields:

Upgoing and downgoing fields are calculated from the measured fields: 

𝐸𝑥
𝐷 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 + 𝑍𝐻𝑦 𝑧, 𝜔 ]



Up/Down separation 3D

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍

( 𝑘𝑥𝑘𝑦𝐻𝑥 𝑧,𝜔 + 𝑘𝜔
2 −𝑘𝑥
2 𝐻𝑦 𝑧,𝜔 )

𝑘𝜔 𝑘𝜔
2 −𝑘𝑥
2−𝑘𝑦
2

]

For vertically traveling field:

General solution:

Vertical propagation 𝑘𝑥 = 𝑘𝑦 = 0

Practical Up-Down decomposition is performed with:

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍𝐻𝑦 𝑧, 𝜔 ]

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍𝐻𝑦 𝑧, 𝜔 ]
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Electric fields paralell to an interface are contineous over interface.

Current normal to interfaces is contineous

Magnetic fields continous if non-magnetic material
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𝜎𝑤
𝑧𝑠
𝑧𝑤

𝜎𝑓

𝜎2𝑧2

𝜎3

𝜎2

𝜎3

𝑧𝑟

Electric fields paralell to an interface are contineous over interface.
Magnetic fields paralell to an interface are contieous over interface.

𝐸𝑥 in waterlayer just above seabed. 
equals 𝐸𝑥 in formation just below seabed.
Same for 𝐻𝑦.
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𝜎𝑤
𝑧𝑠
𝑧𝑤

𝜎𝑓

𝜎2𝑧2

𝜎3

𝜎2

𝜎3

𝑧𝑟
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𝜎𝑤
𝑧𝑠
𝑧𝑤

𝜎𝑓

𝜎2𝑧2

𝜎3

𝜎2

𝜎3

𝑧𝑟
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𝜎𝑤
𝑧𝑠
𝑧𝑤

𝜎𝑓

𝜎2𝑧2

𝜎3

𝜎2

𝜎3

𝑧𝑟

Downgoing airwave
Upgoing airwave reflection
Upgoing transmitted subsurface response
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𝜎𝑤
𝑧𝑠
𝑧𝑤

𝜎𝑓

𝜎2𝑧2

𝜎3
Can calculate upgoing field just below seabed, but that
requires resistivity/conductivity of top formation to be 

estimated

𝜎2

𝜎3

𝑧𝑟

Downgoing transmitted airwave
Upgoing subsurface response
Downgoing reflected subsurface response



Sea water

Formation

Separation above and below seabed

Up/Down separation

Airwave
MT

wZ

fZ



Sea water Low resistivity

Reservoir
Formation

High resistivity

Intermediate resistivities

4290 m



290 m



Up/Down separation
Measured field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from measured field 1D below



Up/Down separation
Measured field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from measured field 1D below



Up/Down separation
Measured field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from measured field 1D below

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍

( 𝑘𝑥𝑘𝑦𝐻𝑥 𝑧,𝜔 + 𝑘𝜔
2 −𝑘𝑥
2 𝐻𝑦 𝑧,𝜔 )

𝑘𝜔 𝑘𝜔
2 −𝑘𝑥
2−𝑘𝑦
2

]



Up/Down separation
Measured field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from measured field 1D below

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍𝑤𝐻𝑦 𝑧, 𝜔 ]



Up/Down separation
Measured field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from measured field 1D below



Up/Down separation
Measured field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from measured field 1D below



Up/Down separation
Measured field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from measured field 1D below

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍𝑤𝐻𝑦 𝑧, 𝜔 ]

𝐸𝑥
𝑈 𝑧, 𝜔 =

1

2
[𝐸𝑥 𝑧, 𝜔 − 𝑍𝑓𝐻𝑦 𝑧, 𝜔 ]



Up/Down separation
Recorded field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from recorded field 1D below



Up/Down separation
Recorded field
Modeled upgoing
Calculated from measured field 3D
Calculated from measured field 1D above
Calculated from recorded field 1D below



Up/Down separation



Doing Up-Down decomposition is not the same as doing a deep water experiment

Internal multiples in waterlayer is not removed.
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Anisotropy



Electrical anisotropy

Resistivity within a formation is 
different in the vertical and horizontal 
directions.

Reasons for this:

Lithology, layering, grain orientation

Fractures

Diagenesis
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Anisotropy Factor= 𝜌𝑣 /𝜌ℎ
Values range from basin to 
basin and stratigraphic 
intervals.

𝜌ℎ

𝜌𝑣



Electrical anisotropy
A formation is said to be electrically anisotropic if its conductivity is direction dependendent.

Principle causes of anisotropy are: Lamination and bedding, grain shape and alignment, and fracturing.

TIV is typical for a formation with horizontal bedding and grain alignment.

General anisotropy is typical for a dipping formation.

In CSEM, it is most common to work with a TIV model.

EJ σOhm’s law:
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
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

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


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v

h

h









TIVGeneral anisotropy

6 independent values
(symmetry property of tensor)



























2 independent values1 independent value

Isotropy

Good to know
• TIV stands for ”transverse isotropy with respect to a vertical axis of rotational symmetry”.
• In vertical wells, resistivity logs measure horizontal resistivity.



Electrical ansiotropy and resolution

• CSEM is a low-frequency technique, so we cannot 
hope to resolve conductivity variations on a scale similar 
to well log resistivity measurements.

• All we can expect is to measure a bulk conductivity of 
a rock slab with dimensions on the order of several 
meters.

• The bulk conductivity is, however, determined by the 
fine-scale structure and constituents of the slab.

• Material averaging laws dictate that the bulk 
conductivity is anisotropic even if the constituents are 
isotropic.
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σbulk



Material averaging for a formation with horizontal bedding


i

ivv
N

,

1



i ihh N ,

111



Vertical current flow
Equivalent circuit:

Resistors in series

Horizontal current flow
Equivalent circuit:

Resistors in parallel

Emphasis on beds with 
relatively high resistivity

Emphasis on beds with 
relatively high 
conductivity

"arithmetic" average of 
vertical resistivity

"harmonic" average of 
horizontal resistivity

Good to know
The effective vertical resistivity is typically higher than the 
effective horizontal resistivity.

The ratio =v/h is called anisotropy factor.
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Thank you


