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• Orthorhombic media 

Figure 1: Orthorhombic model caused by parallel vertical fractures embedded in a finely layered 

medium.(Tsvankin, 2001). In this presentation, x1-, x2- and x3-axes correspond to x-, y-, z-axes, 

respectively. 



Exact expression for P-wave phase velocity 
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P-wave phase velocity can be calculated from 

Stiffness matrix for orthorhombic medium 

where 

Here,                    denotes the unit vector in P-wave propagating direction. 
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• Tsvankin (1997)’s notation for orthorhombic media 

on z-axis 

in [y, z] plane 

in [x, z] plane 

in [x, y] plane 

Figure 1: Orthorhombic model caused by parallel 

vertical fractures embedded in a finely layer 

medium.(Tsvankin, 2001). In this presentation, x1-, 

x2- and x3-axes corresponds to x-, y-, z-axex, 

respectively. 



Figure 2: Schematic plot for the anelliptic approximation of 

P-wave phase velocity. G  is a point on the P-wave phase 

velocity surface (formed by green solid lines).  

Anelliptic approximation for P-wave phase velocity 

Fomel (2004) proposed the anelliptic approximation for P-wave velocity in VTI media. 

We develop the anelliptic approximation for P-wave phase velocity in 3D 

orthorhombic media. 

For the phase-velocity approximation at a specified slice OPQ, we employ an  anelliptic 

function of tilt θ . In this function, we use velocities at point P and Q and the second- 

and fourth-order derivatives with respect to θ at point Q. 
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The anelliptic approximation: 

where 

The elliptic function: 

is an elliptic function with respect to tilt ; 

is an azimuth-dependent weight; 

is the phase velocity in [x, y] plane; 

affects the approximation accuracy off z-axis.  
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Figure 2: Schematic plot for the anelliptic 

approximation of  P-wave phase velocity.  

All medium parameters are used in this approximation.  
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Series expansion for exact phase velocity: 

Series expansion for anelliptic approximation: 
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By fitting the series coefficients, we derive 
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• Azimuth-dependent anellipticity 

We extend the relation between parameter         and anellipticity       for 2D VTI case 

(Fomel, 2004) to 3D orthorhombic case, 
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where parameter            denotes the anellipticity 

in the vertical slice plane with azimuth     . 

Consequently, we derive 

For              ,             becomes                          in [x, z] plane;  

for                    ,           becomes                       in [y, z]  plane. 

Figure 2: Schematic plot for the anelliptic 

approximation of  P-wave phase velocity.  
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Notation for acoustic apprxomiation 
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For the acoustic approximation, S-wave vertically velocity          is taken as 0 (Aklhalifah, 2003). 

In this case, we have six indepdent medium parameters given by 

0s

on z-axis 

in [y, z] plane 

in [x, z] plane 

in [x, y] plane 

Figure 2: Schematic plot for the anelliptic 

approximation of P-wave phase velocity.  
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The simplest approximation 

We define a new Thomsen parameter  in [x, y] plane, 
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Figure 2: Schematic plot for the anelliptic 

approximation of  P-wave phase velocity.  
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Numerical examples 

3km/s 1.2km/s 0.25 0.05 0.28 0.15 -0.1 0.15 0.15 

0p 0s 1 1 1 2 2 2 3

Table 1. Parameters for an orthorhombic medium  

• The variation of functions          and          versus azimuth. 

• Accuracy test of our approximations. 

• The influence of anellipticity parameter       on the accuracy of acoustic and the 

simplest approximations. 
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Figure 3:           (left) and          (right) calculated from anelliptic (red line), acoustic 

(blue line) and the simplest (black line) approximations.  
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Figure 4: Relative absolute error of several approximations in an orthorhombic medium. From left to right, plots 

correspond to our anelliptic, acoustic and simplest approximations as well as Tsvankin (1997) and Daley (2004) 

approximations. 

Figure 5: Error slices extracted from Figure 4 along azimuths of 0 (red line),               (brown line),           (cyan line) 

and              (black line), respectively. The order of plots is the same as those in Figure 4. 

• Accuracy test of our approximations. 
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Note that                      is taken for our acoustic approximation. ( ) 1/ 2s  



• The influence of anellipticity parameter       on the accuracy of acoustic 

and the simplest approximations 
3

a) b) 

c) d) 

The acoustic approximation The simplest approximation 

3 0 

3 0.32 

3 0 

3 0.32 

Figure 6: Relative absolute error of acoustic (plots a and c) and elliptic approximations (plots b and d) for two 

orthorhombic media with elliptical (plots a and b) and anelliptical (plot c and d) properties in [x, y] plane, 

respectively. The notation for colored lines is the same as Figure 5. Only medium parameter    given in 

“numerical examples” is adjusted to be 0.077 and -0.15 for orthorhombic medium with elliptical and strong 

anelliptical properties, respectively. 
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Application for pseudo-wave modeling 

From our acoustic approximation, we derive 
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• Two orthrohombic models 

3km/s 0.25 0.05 0.15 -0.1 0.15 

Table 2. Parameters for an homogenous orthorhombic medium  

A homogeneous orthorhombic medium: 

A vertically factorized orthorhombic medium: 

0 ( ) 1.5 0.472441p z z  

0p 1 1 2 2 3

Figure 7: Setup of  both models 

Other parameters are taken from Tabel 2. 

where the units for        and z are ‘‘km/s’’ and ‘‘km’’. 
Both models have the same value of    

                     at the depth of source. 

0p

0 3km / sp 
For                       (top),  

For                       (bottom),  

0z km

6.35z km

0 1.5 /p km s 

0 4.5 /p km s 



Figure 9: Three slices for the wavefield snapshot at t=0.8s in a 3D vertically factorized orthorhombic medium. 

All slices cross the position of source. 

Figure 8: Three slices for the wavefield snapshot at t=0.8s in a 3D homogneous orthorhombic medium. All 

slices cross the position of source. 



Summary 

• We develop an anelliptic approximation (with nine independent medium 

parameters) for P-wave phase velocity in orthorhombic media. The simplified 

formulas are obtained for acoustic and simplest approximations, respectively.  

• The acoustic approximation (with six independent medium parameters) has 

good accuracy even for the orthorhombic media with a strongly anelliptical 

property in horizontal plane.  

• The simplest approximation (with five independent medium parameters) is 

valid under assumption of weak anellipticity in the horizontal plane. 

• Our phase velocity approximations can be applied to the problem of pseudo-

wave modeling and reverse time migration in orthorhombic media. 
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