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What we learn in physics:
Solids expand upon heating and retract upon cooling

Heat expansion » Heat expansion and
thermal stresses have a
large impact on borehole
stability and caprock
integrity
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However ...

» Heating may result in phase transitions, or non-
reversible processes that involve an activation energy
(chemical reactions, mechanical processes on the
atomic scale)

» Rock compaction is visco-plastic (creep behavior), and
creep processes may be accelerated at increased
temperature
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Thermally induced
compaction in caprock shale

B. Xu, Y.G. Yuan, and Z.C. Wang (2011)

O Thermal contraction of water-
saturated Clearwater Shale (10-30%

clay content) during drained heating
to 75°C and 150°C.

O Sample stiffness and strength
increase (for slow heating rates,
allowing for pore pressure
equilibration)
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At SINTEF we perform extensive rock-mechanical
testing of field shales within the Shale Rock Physics JIP
and the Dynamic Borehole Stability JIP

For competent, (over-)consolidated caprock shales,
we expected negligible or small thermally-induced
compaction for temperatures around in-situ
temperature
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Test results reveal large compaction upon heating
at temperature at or below in-situ temperature
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—vol-strain - Experimental procedure:
@.stran 5 Shale core plugs fully saturated
and brought to in-situ stress
condition

» Stepwise heating

» Strains and ultrasonic velocities
recorded as a function of time

» Cooling to room temperature

rad. strain

—Temp

» Heating/cooling cycle results in
0.8% volumetric compaction

—Vpz » Creep behavior (primary,
== Vsz secondary, and tertiary creep)

» Compaction is also reflected
by increase in ultrasonic
velocities vp and vg
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Field Shale #4
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General features are the same for
all shales:

» Heat expansion is followed by

rad. strain compaction (primary creep), with

—Temp

-==\Vpz

the compaction rate increasing with
temperature (compaction may
partly be explained by drainage
effects)

» Reduction of compaction rate until
a constant creep rate is
established (secondary creep)

» Acceleration of compaction rate
after a certain time (tertiary creep)

» Asymmetry between axial and
radial strain

> Velocity increase () upon cooling
is reversible; reason for relatively
large, reversible velocity changes
(both v, and vg) is not understood
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Reversible temperature dependence of ultrasonic velocities
of Shales
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Apply Gassmann model

Assume linear temperature dependence of dry-rock stiffness:
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Good fit can be obtained by selecting the right temperature-

sensitivity coefficients; physics not understood yet
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Thermally-induced compaction in Pierre shale (outcrop)
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Thermally-induced compaction in Pierre shale (outcrop)

Heat-induced compaction
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Thermally-induced compaction of Pierre shale (outcrop)
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Summary of test results

porosity | Clay [Smectite| O'_ T Tinsitu Ae vol AVID AVS

[%] | [wt%] | [wt%] | [MPa] [ [Cl | [c] [%] | [m/s] | [m/s]
Pierre shale testl 19,2 57,4 31,5 2 120 51 423 -
(outcrop) test2 19,2 57,4 31,5 2 120 6,5 330 -
#1 34,2 64 0 4,9 90 74 0,38 6 -
Field shales H#2 20 56 29 8,2 71 50 0,8 32 10|
H#3 18,6 65 53 10,5 75 75| =134 =~ 49 ~ 42
H4 5 69 0 19,1 90 103 1,2 110 -

» Very large thermally-induced compaction (g, > 5%) for outcrop

shale at 120°C

and #4 at temperatures at or below in-situ temperature

applied stress

porosity shale (shale #4)

SINTEF

SINTEF Petroleum Research

No apparent correlation with initial porosity, smectite content, or

Large compaction observed even in a highly compacted, low-

Large thermally-induced compaction (e, > 1%) for field shales #3
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Possible reasons for thermally-induced compaction in
shale core plugs at or below in-situ temperature

1. Core damage: (micro-)cracks formed during core retrieval might
not get closed again upon re-establishing the in-situ stress state.
Heat may enhance crack healing.

Relevance for field applications: Damage zone around borehole

2. Heat-rate effects: For high heat rates, pore pressure builds up in
the rock as a result of fluid expansion and slow drainage, which
can result in shear or tensile rock failure. Typical pore-pressure
changes: = 0.2 MPa/°C.

Relevance for field applications: In shales, heat diffusion is
generally faster than pore-pressure diffusion; rock failure as a
result of pore-pressure increase is a likely to happen for large
enough heating
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Possible reasons for thermally-induced compaction in
shale core plugs at or below in-situ temperature

3. Brine chemistry: Samples are exposed to synthetic brine, which
might result in rock weakening for not perfectly matched brines

Relevance for field applications: Drilling fluids may alter visco-
plastic properties of surrounding shale formations

SINTEF SINTEF Petroleum Research

16



Summary

U Laboratory tests with core plugs of 5 different shales exhibit sizable
compaction (up to > 1% volumetric strain) upon heating
accompanied by increases in ultrasonic velocities

L Temperature are not high enough to cause chemical changes (e.g.
smedctite-illite transitions)

U Possible explanations for observed compaction include core
damage, heat-rate effects, and brine-chemistry effects

U Thermally-induced compaction of shales may have strong impact on
field applications such as steam injection

SINTEF SINTEF Petroleum Research
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Temperature dependence of ultrasonic velocities of Shales

* Apply Gassmann model

* Assume temperature-independent dry-rock modulus
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Temperature dependence of ultrasonic velocities of Shales

« Apply SINTEF's RP model
* Assume that temperature dependence of bulk and shear
stiffness of bound water is the same as that of ice
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¥i The Shale RP model provides a better description than the Gassmann model (for

temperature independent dry-rock stiffnesses) but still underpredicts the temperature
dependence of Vp and Vs (except for shale #2 where a good match of the Vs data is
obtained).
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Temperature dependence of ultrasonic velocities of Shales

* Apply Gassmann model

» Assume linear temperature dependence of dry-rock stiffness:

Kldry=Kldry,0 (1-CIK-AT) GCldry=6ldry,0 (1-CIG-AT)
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VW] Good fit can be obtained by selecting the right temperature-
sensitivity coefficients; physics not understood yet
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