Fluid Substitution with Dynamic Fluid Modulus: Facing the Challenges in Heterogeneous Rocks

Qiuliang Yao, De-hua Han, Fuyong Yan, Luanxiao Zhao

University of Houston

Apr. 22, 2013

Observations: where does Gassmann break?

Outline

- 1. Fluid effect in closed system: Gassmann
- 2. Fluid effect in non- closed system: partial drainage and DFM
- 3. Wave induced internal flow and dispersion
- 4. Modeling Examples:
 - Mesoscopic heterogeneity
 - Microscopic heterogeneity (crack-pore system)
- 5. DFM from real measured data

Fluid effect in closed system: Gassmann

$$K_{sat} = K_{dry} + \frac{\alpha^2}{(\alpha - \phi)/K_0 + \phi/K_f}$$

Fluid effect in non-closed system: partial drainage and DFM

q: "+" for incoming flow, "-" for outgoing flow

What about closed system with internal flow?

Internal flow

What's the role of fluid flow?

What's the role of fluid flow?

How much fluid moved?

$$q_{\text{max}} = \frac{V_{p2}}{K_f} (dP_{p2H} - dP_{p1H})$$

How much more deformed due to relaxation?

$$\delta V_L - \delta V_H = -\beta_f V_{p2} (\delta P_{p1H} - \delta P_{p2H})$$

$$\delta V_L - \delta V_H = q_{\text{max}}$$

How to calculate q=q(f)?

- Need geometry info on heterogeneity
- * Navier-Stokes equation with proper boundary condition
- * Need proper approximation
- * Mesoscale: general format with characteristic frequency ω_c

$$q = \frac{q_{\text{max}}}{(1 - iP\omega/\omega_c)^{1/2} - i\omega/\omega_c}$$

- * Microscale:
 - **Analytical solution**
 - **Numerical solution**

Frequency dependency of fluid flow: q=q(f)

Where to start from: ∞ Hz or 0 Hz?

q=q(f) in mesoscopic heterogeneity?

Heterogeneity size: 30cm

q=q(f) in microscopic heterogeneity?

$$\frac{q}{\delta P_{f}V_{f}} = \frac{8\pi\varepsilon(1-\nu)}{3\phi\mu} f(\zeta) \left[\frac{\frac{1}{K_{d}} - \frac{1}{K_{s}}}{\frac{1}{K_{d}} - \frac{1}{K}} - f(\zeta) \right] / \left\{ 1 + \frac{4(1-\nu)K_{f}}{3\mu\gamma} \left[1 - f(\zeta) \right] \right\}$$

$$f(\zeta) = \frac{2J_1(\zeta)}{\zeta J_0(\zeta)}$$

$$\zeta = \sqrt{3i\omega\eta/K_f}/\gamma$$

Tang 2011

Squirt flow dispersion, by DFM

$$q'=-(q_{max}-q)$$

Pressure effect on heterogeneities

Elliptical vs. non-elliptical cracks

Elliptical vs. non-elliptical cracks Tight Gas Sandstone

Sample GA2: ×100

Depth :2080.78

Sample GA3: \times 100 \perp

Depth: 2072.53m

Summaries

- 1. Using "dynamic fluid modulus", Gassmann equation can be extended into heterogeneous rocks at non-zero frequency.
- 2. Explicitly link heterogeneities to dispersion and attenuation, by a fluid term.
- 3. More intuitive physical meaning.
- 4. Modeling: more powerful and flexible.
- 5. Inverting: new insight on rock microstructure

Thank You!

