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Objectives

* linking the fields of reservoir engineering and 4D seismic
* separation of fluid saturation and pressure effects on 4D seismic data

* a method faster than reservoir simulation to understand simple, first order effects
of reservoir behaviour using a superpositioning principle
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Pressure — saturation discrimination

Combining an engineering pseudo-steady state flow equation and 4D seismic traveltime shifts:
(pseudo-steady state: all reservoir boundaries have been felt and the reservoir as a whole is contributing to
the flow.)

]_ - ( - d_p)")’ dz = thickness of gas column
U]_ — UQ v, = Vp prior to injection

AT — dZ I D de v, = Vp after injection
U]_ UQ Ul ( ]_ __ ap ) Y D = reservoir thickness

Po g = Mindlin exponent
Py = initial reservoir pressure
saturation (Gassmann) pressure (Hertz-Mindlin) dp = differential pressure p — p,

* radial pressure distribution (injection case)

qBﬂ ( r 1 7“2 p = pressure

) p,, = well radius
g = flow rate
27Thk T w 2 T2 B = volume
factor
r m = viscosity
h = thickness
p(r) T p’w — A x Zn( ) k = permeability
wa r,, = well radius
re>>r,,
r2>>r 2

p(r) = pw —

assumingr, is large

using p,, and a as fitting parameters
(Eq 13.33 Zolotukhin & Ursin, 2000)
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Superpositioning principle — one well

The theorem states: any linear combination of individual solutions to the diffusivity equation is also a
solution to that equation.

Case 1: two no flow boundaries

O

O
/ observer

Inj ’

O

* Removal of physical boundaries and replacing by mirror images of well location
* The mirroring develops into an infinite series, the total pressure at any point is given by the well and
mirror image contribution: nmir

Piorar(r) = Z Pi(r)
=1
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Saturation

* velocity change pre- and post injection by Gassmann’s fluid substitution
* modeling of gas column thickness

reservoir

» with decreasing characteristics of a Gaussian
distribution:

saturation 1 _lyry2
1= dz(r) = e 2 (&) dzo ()
oV 2
CO2 distribution
20 \

[N
a1

* define an area inside the reservoir
* dz is a function of location (x,y)

a1

gas column thickness
(=Y
(@]

=> parameterization of dz \

e circular \

0 100 200 300 400 500
[m] from well
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One well — synthetic

* 31x141x51 cells in x-y-z direction (central part 3000x8000x110m)

* permeability =50mD in x, y, z

* porosity = 14%

* PVT properties for 90 degree celsius and 14% salinity (Span & Wagner, 1996)
* BHP controlled CO, injection over 2.5years
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top: Eclipse model, bottom: inverted model 20 mirror levels
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One well — synthetic

120
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mirror levels SNR [dB]
* mean error « fitting parameters with respect to different SNR
* the error reduces strongly during the first 10 * strong robustness against noise — the inversion
mirror levels parameters remain almost unchanged with

different noise levels
* due to difference close to the well the average
error does not reach zero
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One-well — Snghvit field

*2 sealing faults East-West

* reservoir thickness ~110m

* CO, Injection from April 2008 into Tubaen formation

* interpreted as part of a delta plain environment

e distributary channel systems observed in core analysis

West East

T 2 templates, 6 wells

GAS
PRODUCTION

mMSL
2300

GOC 2404 m
OWC 2418 m

2400+

25004

2600
I Gas

TUBAEN FM.
S~
I Oil

[ Shale 0 5km (Figure: L. Pettersen, 2011)
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One-well — Snghvit field

Case 2: two no flow boundaries: one tilted
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Saturation model

* 3 positive dipol => fct. 2 center shifted
by (120m/-120m)

CO2 distribution CO2 distribution
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One-well — Snghvit field
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* [ateral heterogeneities are not captured by our method
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One-well — Snghvit field

1. The measured timeshifts are heterogeneous
2. Itis most likely that these are caused by
=> noise
=> |ocal: variation in pressure (since we assume that saturation changes are confined to

the near well area)

3. We suggest to let the Mindlin-coefficient vary and interpret these variations with respect to rock
stiffness
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One-well — Snghvit field
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* with variation of Mindlin exponent (between 1/3 and 1/18) main trends can be captured
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5 spot — synthetic

o
©
1

o

Drainge area

In simulation:
* modeling a quarter of one five spot pattern
(Green, D.W,, et.al., 1998)

010 : ®
Series of 5 spot pattern in an ideal field ! !
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. 8 mirror points per mirror level and for each well
O g @ => mirror level 10 has 440 mirror points/well
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5 spot — synthetic: pressure modeling

* 30x30x3 cells in x-y-z direction (3000x3000x30m)

* permeability =500mD in x, vy, z

* porosity = 30%

* rate controlled gas injection and oil production after 3 years

AP simulation bar AP inversion bar Difference Sim vs Inv
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5 spot — synthetic: pressure modeling

analytical solution

Py = Z [pw; — a; * Eog(ﬁ)] pressure from injector + mirror images
nkinj Tw
Tn ‘ . .
Ppro = Z ['t'””p — Qp * 309(_)} pressure from producer + mirror images 3 inversion parameters
nkpro w
T T .
Pyt = pw; — pw, — [gﬁi Z gog(i) + a, Z Eog(i)] total pressure from injector and producer
nEinj Tw nEpro Tw
dependent
workflow
* least square method (min|Psim- Pmod|"2), taking partial derivatives with respect to inversion
parameters

* set up system of equations (A)

* invert (A)! to find explicit solutions for the inversion parameters
AP analytic bar Difference Sim vs Ana bar
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5 spot — synthetic: saturation modeling

simulation
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Conclusions & Outlook

* combining simple pressure modeling and 4D seismic traveltime shifts using the concept of

superpositioning in space

» amount of mirror levels depends on well location, length or amount of inj. /prod. rate

* fast and easily applicable to describe first order effects of pressure and saturation behaviour

* [imitations: spatially low frequent and valid for homogeneous reservoir conditions

* variation of Mindlin exponent helps to include main heterogeneous trends

* application to hydrocarbon production and injection cases

* many mirror images when a fault is intersecting by 45 degrees

* how will this concept work in a more complex setting like the Norne field?

* how would temperature effects change the result?

Intersecting faults (45 degree)
Need seven image wells
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Considering a homogeneous layer of thickness D, where one embedded portion of it (dz) is

filled with C'O2, and assuming that

d d
Ti=24% gnd =245, (1)
V0 0 vo v1

we obtain the following expression for the traveltime change caused by the presence of C'Os:

AT = dz0 " (2)

Vgt

here, vy defines the background velocity and v, the velocity for the C'O- filled rock respec-

tively. Velocity changes are modeled using Gassmann fluid substitution (Gassmann, 1951).
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For simplicity, we neglect reservoir compaction and imply that the induced pressure effect
is causing a velocity change over the entire reservoir thickness D, so that the traveltime

shifts resulting from pressure changes can be defined as:

L 1
AT =D(— - -, (3)
oy

, . .
where v denotes the new P-wave velocity resulting from pressure changes. Based on the
Hertz-Mindlin theory (Mindlin, 1949) a relation between P-wave velocity and effective pres-
sure is stated as:

where P = F)+dP. (4)

Iy denotes the in situ effective reservoir pressure, P the new effective pressure, dP the
change in effective pressure and « the Mindlin exponent. Finally, combining equation 2,
3 and 4 leads to an expression guantifying timeshifts caused by pressure and saturation

changes:

vo — v 1—(1- 95
AT = dz 2~ " : 4F) (5)
L vp(l = 5=

When modelling the trailing term of the traveltime shift equation, we are setting the con-

strained that:
dP

1-(1- =0 6
( ”J)/ (6)

to ensure a non complex return of fitting results. The thickness of the gas column dz is

modeled with decreasing characteristics of a normal distribution:
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