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3 Objectives 

• linking the fields of reservoir engineering and 4D seismic 
 
• separation of fluid saturation and pressure effects on 4D seismic data 
 
• a method faster than reservoir simulation to understand simple, first order effects 
  of reservoir behaviour using a superpositioning principle 
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Pressure – saturation discrimination  

       saturation (Gassmann)       pressure (Hertz-Mindlin) 

dz = thickness of gas column 
v1 = Vp prior to injection 
v2 = Vp after injection  
D = reservoir thickness 
g = Mindlin exponent 
p0 =  initial reservoir pressure 
dp = differential pressure p – p0 

  

 Combining an engineering pseudo-steady state flow equation and 4D seismic traveltime shifts: 
(pseudo-steady state: all reservoir boundaries have been felt and the reservoir as a whole is contributing to 
the flow.) 

• radial pressure distribution (injection case) 

(Eq 13.33 Zolotukhin & Ursin, 2000) 

assuming re is large 
 
using pw and a as fitting parameters  

p = pressure 
pw = well radius 
q = flow rate 
B = volume 
factor 
m = viscosity 
h = thickness 
k = permeability 
rw = well radius 
re >> rw  
r2 >> rw

2 



5 Superpositioning principle – one well 

The theorem states: any linear combination of individual solutions to the diffusivity equation is also a 
solution to that equation. 

   Case 1: two no flow boundaries    

Inj 

observer 

 
 
• Removal of physical boundaries and replacing by mirror images of well location 
• The mirroring develops into an infinite series, the total pressure at any point is given by the well and        
   mirror image contribution: 
 
 



6 Saturation 

• velocity change pre- and post injection by Gassmann’s fluid substitution 
• modeling of gas column thickness 
 

• define an area inside the reservoir 
• dz is a function of location (x,y) 
 

=> parameterization of dz 
• circular 
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7 One well – synthetic 

• 31x141x51 cells in x-y-z direction (central part 3000x8000x110m) 
• permeability = 50mD in x, y, z 
• porosity = 14% 
• PVT properties for 90 degree celsius and 14% salinity (Span & Wagner, 1996) 
• BHP controlled CO2 injection over 2.5years 
 

         DP                    DS    

top: Eclipse model, bottom: inverted model 20 mirror levels 



8 One well – synthetic 

• mean error 
 
• the error reduces strongly during the first 10 
mirror levels 
 
• due to difference close to the well the average 
error does not reach zero 

• fitting parameters with respect to different SNR 
 
• strong robustness against noise – the inversion 
parameters remain almost unchanged with 
different noise levels 
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9 One-well – Snøhvit field 

  
•2 sealing faults East-West 
• reservoir thickness ~110m 
• CO2 Injection from April 2008 into Tubåen formation  
• interpreted as part of a delta plain environment 
• distributary channel systems observed in core analysis 

(Figure: L. Pettersen, 2011) 



10 One-well – Snøhvit field 

Inj 
5degree 
tilt 

Case 2: two no flow boundaries: one tilted  Saturation model 
 
         

• a positive dipol => fct. 2 center shifted 
by (120m/-120m)  
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• lateral heterogeneities are not captured by our method 
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12 One-well – Snøhvit field 

1. The measured timeshifts are heterogeneous 
 

2. It is most likely that these are caused by 
 

 =>  noise 
 => local: variation in pressure (since we assume that saturation changes are confined to    
      the near well area) 
 
3. We suggest to let the Mindlin-coefficient vary and interpret these variations with respect to rock 

stiffness 
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One-well – Snøhvit field 

• with variation of Mindlin exponent  (between 1/3 and 1/18) main trends can be captured 
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14 5 spot – synthetic  

8 mirror points per mirror level and for each well  
=> mirror level 10 has 440 mirror points/well 

Inj 
Prod 

Drainge area 

dp = 0 

Inj 

Prod 

Series of 5 spot pattern in an ideal field  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In simulation: 
• modeling a quarter of one five spot pattern 
(Green, D.W., et.al., 1998) 
 



15 5 spot – synthetic: pressure modeling  
• 30x30x3 cells in x-y-z direction (3000x3000x30m) 
• permeability = 500mD in x, y, z 
• porosity = 30% 
• rate controlled gas injection and oil production after 3 years 
 

• pressure modeling for 5 (top) 
and 10 (bottom) mirror levels 
using a non-linear least square 
fitting method 
 
• sum over differences reduces 
from 487.7 to 478.4) 
 
=>  local minimum instead of 
global minimum? 
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16 5 spot – synthetic: pressure modeling 

analytical solution 

         
dependent  

pressure from injector + mirror images 

pressure from producer + mirror images 

total pressure from injector and producer 

• least square method (min|Psim- Pmod|^2) , taking partial derivatives with respect to inversion 
parameters 
• set up system of equations (A) 
• invert (A)-1 to find explicit solutions for the inversion parameters 

3 inversion parameters 

workflow 
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17 5 spot – synthetic: saturation modeling 

 1 year              3 years    3.5 years  
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18 Conclusions & Outlook 

• combining simple pressure modeling and 4D seismic traveltime shifts using the concept of    
  superpositioning in space 
• amount of mirror levels depends on well location, length or amount of inj. /prod. rate  

• fast and easily applicable to describe first order effects of pressure and saturation behaviour 

• limitations: spatially low frequent and  valid for homogeneous reservoir conditions 

• variation of Mindlin exponent helps to include main heterogeneous trends 

• application to hydrocarbon production and injection cases 

• many mirror images when a fault is intersecting by 45 degrees 

• how will this concept work in a more complex setting like the Norne field? 

• how would temperature effects change the result? 
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