Reverse-time demigration using the extended imaging condition

Wiktor Weibull and Børge Arntsen

ROSE Meeting, April 2013

Outline

- Introduction
- 2 Theory
- 3 Applications
- Summary and remarks

Outline

- 1 Introduction
- 2 Theory
- Applications
- Summary and remarks

- The forward and inverse process of migration and demigration or remodeling has many interesting applications in seismic data processing
- Need for a method to transform seismic reflection data from the image-domain back to the prestack reflection data domain
- We developed a method to reconstruct seismic reflection data from common image point gathers contructed with RTM using an extended imaging condition
- The method is not directly dependent on the accuracy of velocity model

- The forward and inverse process of migration and demigration or remodeling has many interesting applications in seismic data processing
- Need for a method to transform seismic reflection data from the image-domain back to the prestack reflection data domain
- We developed a method to reconstruct seismic reflection data from common image point gathers contructed with RTM using an extended imaging condition
- The method is not directly dependent on the accuracy of velocity model

- The forward and inverse process of migration and demigration or remodeling has many interesting applications in seismic data processing
- Need for a method to transform seismic reflection data from the image-domain back to the prestack reflection data domain
- We developed a method to reconstruct seismic reflection data from common image point gathers contructed with RTM using an extended imaging condition
- The method is not directly dependent on the accuracy of velocity model

- The forward and inverse process of migration and demigration or remodeling has many interesting applications in seismic data processing
- Need for a method to transform seismic reflection data from the image-domain back to the prestack reflection data domain
- We developed a method to reconstruct seismic reflection data from common image point gathers contructed with RTM using an extended imaging condition
- The method is not directly dependent on the accuracy of velocity model

Outline

- Introduction
- 2 Theory
- Applications
- Summary and remarks

Extended imaging condition

Reverse-time migration

Migration

$$R(\mathbf{x}, \mathbf{h}) = \int d\mathbf{s} \int dt \ W_s(\mathbf{x} - \mathbf{h}, t, \mathbf{s}) \times$$
$$\int d\mathbf{r} \int dt' \ G(\mathbf{x} + \mathbf{h}, t; \mathbf{r}, t') P(\mathbf{r}, t', \mathbf{s})$$
(1)

$$W_{s}(\mathbf{x},t,\mathbf{s}) = \int d\mathbf{s} \int dt' \ G(\mathbf{x},t;\mathbf{s},t') S(\mathbf{s},t')$$
 (2)

Reverse-time demigration

Migration

$$R(\mathbf{x}, \mathbf{h}) = \int d\mathbf{s} \int dt \ W_s(\mathbf{x} - \mathbf{h}, t, \mathbf{s}) \times$$

$$\int d\mathbf{r} \int dt' \ G(\mathbf{x} + \mathbf{h}, t; \mathbf{r}, t') P(\mathbf{r}, t', \mathbf{s})$$
(3)

$$P(\mathbf{r}, t, s) = \int d\mathbf{x} \int dt' \ G(\mathbf{r}, t; \mathbf{x}, t') \times$$

$$\int d\mathbf{h} \frac{\partial^2 R}{\partial z^2} (\mathbf{x} - \mathbf{h}, \mathbf{h}) W_s(\mathbf{x} - 2\mathbf{h}, t', s)$$
(4)

Least squares error function

$$J = \frac{1}{2} \int d\mathbf{x} \int d\mathbf{h} \left[\frac{\partial R^0}{\partial z} (\mathbf{x}, \mathbf{h}) - \frac{\partial R}{\partial z} (\mathbf{x}, \mathbf{h}) \right]^2$$
 (5)

Steepest descent

$$P_{i+1}(\mathbf{x}, t, s) = P_i(\mathbf{x}, t, s) - \alpha_i \frac{\partial J}{\partial P_i}(\mathbf{x}, t, s)$$
 (6)

Gradient

$$\frac{\partial J}{\partial P_i}(\mathbf{x}, t, s) = \int d\mathbf{x}' \int dt' \ G(\mathbf{x}, t; \mathbf{x}', t') \times
\int d\mathbf{h} \frac{\partial^2 \Delta R_i}{\partial z^2} (\mathbf{x}' - \mathbf{h}, \mathbf{h}) W_s(\mathbf{x}' - 2\mathbf{h}, t', s)$$
(7)

Outline

- Introduction
- 2 Theory
- 3 Applications
- Summary and remarks

Data reconstruction

Dip aliased shot gathers

CIGs and dip aliasing

Demigration

Original

Decimated

Reconstructed

Multiple attenuation

CIGs and multiples

CIGs and multiples

Demigration

Demigrated

Difference

Outline

- Introduction
- Theory
- 3 Applications
- Summary and remarks

Summary and remarks

- We developed a method to reconstruct seismic reflection data from CIGs constructed with RTM using an extended imaging condition
- The numerical experiments show that the method allows kinematic reconstruction of the data after 1 iteration
- On the other hand, amplitude reconstruction requires many iterations
- The method can be used to process data acquired over complex geological media

Acknowledgments

We acknowledge Statoil Petroleum AS and the sponsors of the ROSE consortium for financial support of this work.

Bibliography

- Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467–481.
- Rickett, J. E., and P. C. Sava, 2002, Offset and angle-domain common image-point gathers for shot-profile migration: Geophysics, 67, 883–889.