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Motivation

» 3D seismic modeling is an important tool today.

» Difficulties in simulating 3D wave propagation due to the
presence of shadow zones, head waves, diffractions and edge
effects.

» How to check the validity of the results?
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» Numerical seismic modeling carried out using the multiple
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Synthetic data vs. Laboratory data

» Numerical seismic modeling carried out using the multiple
version of the Tip-wave Superposition Method (Ayzenberg et al.,
2007 Geophysics 72)

» Laboratory data obtained in the Laboratoire de Mécanique et
d’ Acoustique in Marseille, France (N. Favretto-Cristini, P.
Cristini) for zero-offset experiment in a water tank
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Multiple Tip-Wave Superposition method
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MTWSM

Multiple Tip-Wave Superposition method
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Multiple Tip-Wave Superposition Method

» Superposition of events according to their wavecodes
p(x") =p(x) +p (x) ()
» Combination of surface integral propagators P and R/T operators
PV = Pix (R <1?(0)>>, (2)
p(3) (x") = Plxr<T12P21 <R22P12<T12<p(0)>>>>, 3)

9 ,
where P(s,s')(...) = = [[5 [ G(is) G(s;s’)%(...)} %
is the propagatlon operator inside the layer,

R and T are the R/T operators at the interfaces.
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Multiple Tip-Wave Superposition Method

Approximations:
1. R/T operators approximated by R/T coefficients Rand T.

2. Interfaces split into small elements, propagation operators
approximated by propagation matrices L, and Ly

Then

pW(x") ~ P -Ryp-p@, (4)
pP () ~ Py -Lip-Ly -Tio-p©, )

where scalar elements of layer matrices L1 and L;; are represented
by the tip-wave beams

AL =R/T-AP=R/T <27r = cos O¢ > (6)



MTWSM algorithm
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Attenuation

» Characterized by the quality factors Q) and Q.

» Has two different effects on the propagating wave fields:

o Decrease in amplitude and broadening of a pulse.

o Change of the impulse shape as reflection/transmission
coefficients are functions of the Q-contrast between media.
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Kolsky-Futterman model (Kolsky,1956; Futterman, 1962)

Assumption: attenuation is strictly linear with frequency over the
seismic frequency range (1-200 Hz)

» complex number k(w) = = L,,O(Jiw) + ia(w)

» phase velocity L,,(%) = C% + miQ, In
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Kolsky-Futterman model (Kolsky,1956; Futterman, 1962)

Assumption: attenuation is strictly linear with frequency over the
seismic frequency range (1-200 Hz)

» complex number k(w) = = L,,O(Jiw) + ia(w)
» phase velocity L,,(%) = c% + WCiQr In |2

» attenuation a(w) = leé_

where ¢, and Q, are the values of ¢, and Q) at the reference frequency w;,.
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Experiment

Tank \
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Experiment

Properties of the materials

Transducer Transducer
Wavecodes
C,
=1493 m/s
Water ,c, =1000 fg/;.w Water

-15 cm -15 cm _m Attenuation

v, =2220m/s 40<Q,<60
PVC v, =1050 m/s PVC 27< "<31

p =1412 kg/m’ Q.

-18 cm -18 cm
v, = 6440 m/s

Aluminium v, =3170 m/s Aluminium

p =2700 kg/m’*

-24 cm -24 cm
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Experiment
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Spectrum
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Experiment

Normalized directivity pattern
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Experiment

Acquisition design
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Numerical modeling
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Numerical comparison

2o s1(8)-s2(2)

Similarity factor F = 2 - OISO

Line | Source 1 | Source 2

NB | Y150 | 0.9729 0.9450

Y250 | 0.9076 0.9299

BB | Y150 | 0.91860 | 0.8367

Y250 | 0.9158 0.9389
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Conclusions and future work

» Numerical simulations of wave propagation in layered medium
using the MTWSM.

» Laboratory measurements of reflected ultrasonic waves for
narrow-beam and broad-beam transducers.

» Comparisons indicate a good quantitative fit in time arrivals and
amplitudes.

» Multi-offset seismic experiments using sources with unfocused
beam and 3D array receivers covering the entire model.
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