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Quick comparison between Sleipner and Snehvit

Depth Initial temperature | Initial pressure | Tco, at IP
Sleipner | 1000 m 35°C 10 MPa 48 °C
Snehvit | 2600 m 100 °C 29 MPa 26 °C
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Phase plot of CO,
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Closed box illustration
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CO, density
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Brine density
hvit CO2
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CO, viscosity
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Brine viscosity
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CO, speed of sound
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Brine speed of sound
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Time lapse gravimetry (2005-2002)
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Time lapse gravimetry

_ Gmpolarbear
2
(6.67-107" mkg=s=”) - (600 kq)
(2m)?
=10"%m/s* = 1pGal.

Meas. appr

(o] o}



Time lapse gravimetry

Observed in-situ CO, density from gravity
measurements: /20 4 80 kg/m3 (Alnes et al. 201 1).

Using seismic data and tuning relationship to estimate
volume.
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Some available Snehvit data (Tubaen)

WH

Injection rate [tons/hour]

DS (1.8 km)

i

17408 1708 150008 14.000 14400 14708 11000 1110 12410

Time

IP (2.6 km)

Meas. appr

@00




Some available Snehvit data (Tubaen)
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Some available Snehvit data (Tubaen)
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Existing literature

Cronshaw & Bolling (1982):

Develops a simple finite

difference model for the well.

Calculates
pressure/temperature at
well head for different
reservoir pres-
sures/temperatures/flow
rates.

Assumptions:
Radial heat exchange

between formation and well.

Existing literature
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have developed a numerical model
whichdeserioas. che tosphase. Eioe, "ohe heat
ne

the' conduction squation while iterating on
the wellbore balance equations
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Existing literature

Lu & Connell (2008):

Calculates
pressure/temperature at the
injection point for different
well head conditions pres-
sures/temperatures/flow
rates.

Assumptions:

Quasy-steady flow (i.e. time
derivatives in the well
equations are neglected).

Existing literature
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Non-isothermal flow of carbon dioxide in injection wells
during geological storage

Meng Lu, Luke D. Connell*
€SO Petrlum, an Viark Lato view Avense, Claye, V1

s Copyright - 2007 Published by Hsrvier L. All ighs resered.




Existing literature

Paterson et al. (2008):

Uses the formulations of Lu

& Connell (2008) on

different scenarios, including

a blow out case.
Assumptions:

The same as for Lu &
Connell

Existing literature
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SPE 115946

Numerical Modeling of Pressure and Temperature Profiles Including Phase
Transitions in Carbon Dioxide Wells

Lincoin Patrson. SPE, COZGRC, CSIRO: Meng Lu. SPE, CSIRO; Lke D Connel, SPE, GSIRO: and Jonathan
EnmisKing. SPE. COZCRC. GSIFG
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Existing literature
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Abstract

C a | Ccu | a t es In cases where CO; Is ransported over long distances onshore or locally compressed offshore the temperature atthe

welllead will typicaly be below 31°C. If the well head pressure s below the sauration pressure two phases will
ccur a the injection point. A model of the njection well, taking into ac count the phase changes, adiabatic heating
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Assumptions: B

From the head of the injection well o the reservoir the CO, is affected by several physical effects that contribute
o the pressure and temperature profile along the well. Heat will be exchanged with the surrounding rocks along the
well, This will notonly affect the flid propertes of the CO in the well bu also the rock will be cooled or heated by

B ernou | | i YS e q uat i on, w it h e luid flow. As CO, s tansported down the wellthe CO i heated due 1o compression an 1o  esser exient also

heated due o frictional forces. T the CO, is in two phases at the well head, als the phase changes have to be taken

kinetic term neglected.
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regime along the whole length of the well In ase there is a two-phase condition in part of the well as i the case of




Problem with existing literature

Main problem

Does not discuss uncertainties in calculated injection point pressure and
temperatures due to uncertainties in input data or
assumptions/simplifications in the model itself.

Initial geothermal gradient.
Pressure and temperature at the well head.
Gas/liquid ratio at the well head.

Injection rate at the well head.

Heat transport between well and formation (radial/adiabatic).

The quasi-steady approach.

Existing literature
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Well equations
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Sleipner calculation example
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Conclusions

Accurate downhole temperature and pressure measurements
might be important for many carbon storage scenarios.

For the Sleipner case, the downhole pressure might change by as
much as >~ 4 MPa without pressure increase at the well head.

Sensitivity analysis in the different input variables for the
quasi-steady case should be done.

Existing literature on the topic lack discussion of model and
parameter uncertainties.

Conclusions
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