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Snøhvit
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Quick comparison between Sleipner and Snøhvit

Depth Initial temperature Initial pressure TCO2 at IP

Sleipner 1000 m 35 ◦C 10 MPa 48 ◦C
Snøhvit 2600 m 100 ◦C 29 MPa 26 ◦C
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Phase plot of CO2

Span & Wagner (1996)
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Closed box illustration
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CO2 density

Span & Wagner (1996)
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Brine density

IAWPS (1997), Batzle & Wang (1992)
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CO2 viscosity

Fenghour et al. (1998)
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Brine viscosity

Batzle & Wang (1992)
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CO2 speed of sound

Span & Wagner (1996)
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Brine speed of sound

IAWPS (1997), Batzle & Wang (1992)
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Time lapse gravimetry (2005-2002)

(Alnes et al. 2011)
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Time lapse gravimetry

g =
Gmpolarbear

r2

=
(6.67 · 10−11 m3kg−1s−2) · (600 kg)

(2 m)2

= 10−8 m/s2 ≡ 1µGal.
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Time lapse gravimetry

• Observed in-situ CO2 density from gravity
measurements: 720± 80 kg/m3 (Alnes et al. 2011).

• Using seismic data and tuning relationship to estimate
volume.
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Some available Snøhvit data (Tubåen)
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Some available Snøhvit data (Tubåen)
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Existing literature

Cronshaw & Bolling (1982):
• Develops a simple finite
difference model for the well.

• Calculates
pressure/temperature at
well head for different
reservoir pres-
sures/temperatures/flow
rates.

Assumptions:
• Radial heat exchange
between formation and well.
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Existing literature

Lu & Connell (2008):
• Calculates
pressure/temperature at the
injection point for different
well head conditions pres-
sures/temperatures/flow
rates.

Assumptions:
• Quasy-steady flow (i.e. time
derivatives in the well
equations are neglected).
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Existing literature

Paterson et al. (2008):
• Uses the formulations of Lu
& Connell (2008) on
different scenarios, including
a blow out case.

Assumptions:
• The same as for Lu &
Connell
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Existing literature

Lindeberg (2010):
• Finds that in the Sleipner
case, adiabatic conditions are
approached quickly.

• Calculates
temperature/pressure at
injection point given well
head conditions.

Assumptions:
• Bernoulli’s equation, with
kinetic term neglected.
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Problem with existing literature

Main problem

Does not discuss uncertainties in calculated injection point pressure and
temperatures due to uncertainties in input data or
assumptions/simplifications in the model itself.

• Initial geothermal gradient.
• Pressure and temperature at the well head.
• Gas/liquid ratio at the well head.
• Injection rate at the well head.

• Heat transport between well and formation (radial/adiabatic).
• The quasi-steady approach.
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Well equations

dp
dl

= ρg cos θ − fρv3

2|v|D −
∂(ρv2)
∂l

− ∂(ρv)
∂t

.

∂(ρe)
∂t
− (h+ v2/2− gz)∂ρ

∂t
+ ρv

[
∂h
∂l

+ v
∂v
∂l
− g cos θ

]
= q̇.

∂

∂t
→ 0, Ṁ = Aρv, q̇ = 0.
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Sleipner calculation example
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Conclusions

• Accurate downhole temperature and pressure measurements
might be important for many carbon storage scenarios.

• For the Sleipner case, the downhole pressure might change by as
much as ' 4 MPa without pressure increase at the well head.

• Sensitivity analysis in the different input variables for the
quasi-steady case should be done.

• Existing literature on the topic lack discussion of model and
parameter uncertainties.
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