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We claim that:

- velocity dispersion between ultrasonic and seismic frequencies 
can be estimated from a standard rock mechanical test set-up 
with acoustic velocity measurements

Long term challenge:

- measuring acoustic velocities 
at seismic frequencies 
in the laboratory

Wavelength >> sample size
 no travelling wave

Extremely small deformations (10-7)
 resolution is a problem

Stress path vs wave mode
 anisotropy can be a problem
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Standard triaxial set-up + acoustics

Stress
Strain
Acoustic wave velocities

Laboratory tests:

Enables simultaneous measurements of
- static moduli (slope of stress-strain curve)
- dynamic moduli (density x velocity2)

Measurements:
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Static and dynamic moduli of soft rocks are different.

The difference changes
along the stress path.

Potential causes for the difference
between static and dynamic moduli:

- Strain rate     dispersion
- Rock volume involved
- Drainage conditons
- Anisotropy
- Non-elastic processes
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1. Homogeneous rock 

No wavelength effect

Same rock involed for both
static and dynamic
measurements

Measures to isolate strain rate effects

Potential causes for the difference
between static and dynamic moduli:

- Strain rate   
- Rock volume involved
- Drainage conditons
- Anisotropy
- Non-elastic processes
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2. Consistent drainage conditions

Static moduli: usually drained

Dynamic moduli: undrained

 dry, partially saturated, or undrained

Measures to isolate strain rate effects

Potential causes for the difference
between static and dynamic moduli:

- Strain rate   
- Rock volume involved
- Drainage conditons
- Anisotropy
- Non-elastic processes
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3. Stress path: K0

 Same modulus, static and dynamic

Measures to isolate strain rate effects

Potential causes for the difference
between static and dynamic moduli:

- Strain rate   
- Rock volume involved
- Drainage conditons
- Anisotropy
- Non-elastic processes

Static modulus = slope of
stress-strain curve:

Dynamic modulus given by 
axial P-wave velocity:
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Non-elastic processes causing differences
between static and dynamic moduli in dry rocks: 

Crushing of asperities at grain contacts or crack faces

Occurs only during loading

Friction controlled shear sliding of closed cracks
(accompanied by opening or closing of "wing cracks")

Occurs both during loading and unloading
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Observation:

9

Non-elastic compliance

increases linearly with decreasing stress 
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Unloading:

Non-elastic processes

Fjær et al. (2011):
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4. Unloading & backwards extrapolation

Linear extrapolation towards the beginning
of the unloading path eliminates
non-elastic contributions

Measures to isolate strain rate effects

Potential causes for the difference
between static and dynamic moduli:

- Strain rate   
- Rock volume involved
- Drainage conditons
- Anisotropy
- Non-elastic processes

tpH
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Strain rate

Average strain rate for 
dynamic measurements:

= strain amplitude

= frequency

For "static" deformations

Corresponds to an acoustic wave with

If strain rate is the only cause for the difference
between the static and dynamic moduli, then

extrapolated static modulus  dynamic modulus at  1 Hz
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Mancos shale

Partly saturated, 
with 13% illite/smectite, 
5% kaolinite, etc. 

– probably significant dispersion
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Main sources of uncertainty:

C33 (static stiffness) 
– related to stress and strain measurements

VP,High (ultrasonic velocity) 
– related to calibration and traveltime measurements

b (linear trendline parameter) 
– related to fluctuations in the non-elastic compliance

 (density) 
– related to weight and volume measurements

Comparing
repeated measurements
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Mancos shale

Partly saturated, 
with 13% illite/smectite, 
5% kaolinite, etc. 

– probably significant dispersion

Significant dispersion, far beyond the resolution limit for the method
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Castlegate sandstone

Dry, clay free

– presumably no significant
dispersion

No measurable dispersion
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Berea sandstone

Dry, 8% clay

– possibly some dispersion
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Berea sandstone

Dry, 8% clay

– possibly some dispersion

Significant, 
measurable dispersion, 

decreasing with increasing
stress
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Conclusions:

- We argue that velocity dispersion between ultrasonic and seismic 
frequencies can be estimated from a standard rock mechanical test 
with acoustic velocity measurements.

- The demand for accuracy is not extreme. Standard, good quality 
measurements is sufficient. 

- Application of this method on two sandstone and one shale sample 
indicates that dispersion increases with clay content and decreases 
with stress. Intrinsic dispersion associated with clay, and patchy 
saturation, are potential causes.
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