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Why are temperature effects important?

Thermal EOR Fluid injection (e.g. CO,)
Steam CO, (T = 20°C)

Caprock -
Heat

Reservoir

= Heating of reservoir = Temperature difference between
injected CO, and surrounding

= Heat diffusion into caprock formation

= Thermally induced stress (and

= Thermally induced pore-pressure
pore-pressure) changes

and stress changes around injector
= Possible risks: fault reactivation, wells may result in rock failure and
leakage, interface slip leakage of CO,
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Why are temperature effects important?

Heating induces:

* Elastic rock expansion and
thermal stresses
U understood; expansion coefficients should be measured with
core material

* Pore pressure increase in low-
permeability rocks
& in shales, heat diffusion is faster than pore-pressure diffusion;
thermo-poroelasticitiy established but measurement of coupling
coefficients recommended (A. Bauer et al., 2012)

* Irreversible rock compaction This study
U Not well understood for shales

* Velocity changes This study
& Not well understood for shales
& Understanding important for quantitative
interpretation of timelapse seisimic
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Temperature dependence of ultrasonic velocities

* For the temperatures range of interest (T < 200°C), the stiffness of
rock minerals (quartz) changes only slightly

e |f the dry rock does not show any significant temperature
dependence the temperature dependence of the saturated-rock
stiffness (low-frequency limit) may be described by the Gassmann

model: 2
)
_T Ks,i: Bulk modulus of saturated rock
K =K. + M : -G Kgry: Bulk modulus of rock frame
sat — Tdy ¢ (1-¢) Ky, 7 T Kq: Bulk modulus of grains
k.M k. K Ky: Fluid modulus
f ar ar G, Shear modulus of saturated rock
Gary: Shear modulus of rock frame
- . ¢: Porosity
* Velocities are given by: p: Density of saturated rock

Vp(T):\/Ksat(T)+gGsat(T) ;VS(T): Gsat(T)

o(T) p(T)
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Temperature dependence of ultrasonic velocities

* For many rocks, deviations from the Gassmann model were
observed for both V,and V..

* For water-saturated Castlegate sandstone, it was shown the
Gassmann model provides a food description if the temperature
dependence of the dynamic rock stiffness for a small but non-
vanishing water saturation is taken as "dry-rock" stiffness (drained-
rock stiffness)
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Temperature dependence of ultrasonic velocities
in shales

Core-plug measurements with subsurface shales covering a
wide range of depths, porosity, and clay content:

Shale Age Depth Porosity | Clay cont.
[mTVD] [%] [wit%]
#1 Paleocene 2620 32 84
#2 | Upper Miocene 1730 40 42
#3 Miocene 1750 53 40
#4 Upper Jurrasic 2390 12 73
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Temperature dependence of ultrasonic velocities

in shales
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SINTEF's Shale rock physics (RP) model accounts for
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Temperature dependence of ultrasonic velocities

in shales

Emperical approach:

Apply Gassmann model and assume linear
temperature dependences of drained-rock moduli:

Kdry = Kdry,o (1—Ck-AT)
Gdry = Gdry,o (1—Cg - AT)

Good fit of experimental data for

C ~1.0-1.4-102K?, and C,~ 0.1 -0.4-10%2 KL,

Bound-water effects, fluid-rock interaction, etc.
included in drained-rock modulus.

Temperature [°C]
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Temperature dependence of shale velocities —
Dispersion effects

Is the temperature dependence of ultrasonic velocities the
same as that of sonic and seismic velocities?

%, There is evidence for relatively
large velocity dispersion in shales

O 1t is likely that velocity dispersion
is temperature dependent
(previous compaction tests have
shown smaller temperature
dependence of static stiffness as
compared to dynamic drained- . . . . . T
rock stiffness) | | | | | s

0.8
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I Ing
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& Need for temperature-dependent
dispersion measurements Duranti, Ewy, Hofmann (2006)
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Thermally induced compaction of shales

Project work at NTNU Fall 2012 by Leni Margen

w/ assistance from Eyvind F Sgnstebg@, Olav-Magnar Nes, Liang Wang (SINTEF Energy),
Andreas Bauer & Rune M Holt

Motivation

* Significant contraction has been observed at elevated temperature (<
100°C) in previous shale experiments at SINTEF — artefact or reality?

 Thermally induced compaction could have significant impact on caprock
integrity and wellbore stability
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Thermally induced compaction of shales

Literature study

Thermal compaction of
reconstituted clay
(Ghahremannejad, 2003): Largely
plastic behaviour during initial
heating, elastic behaviour during
cooling and reheating

Stress history dependent thermal
behaviour of kaolin clay during
heating; initial consolidation at
0.6 MPa (Cekerevac et al., 2004)

Normally consolidated samples
show contraction; heavily
overconsolidated samples show
dilatancy.
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Thermally induced compaction of Pierre shale

Experimental observations

Drained heating of Pierre Shale @ 7 MPa (isotropic) external stress &
5 MPa pore pressure within the SMASH apparatus
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Upon heating, the sample expands, followed

by time-dependent irreversible compaction
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Thermally induced compaction of Pierre shale

Experimental observations

Strain data corrected with the thermal expansion coefficient, estimated from
the cooling stages (when elastic behaviour can be assumed) (o, = 19-10° °C*)
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Significant contraction
takes place as non-
elastic creep.

The volumetric strain
corresponds to
porosity reduction
from 19 to 14 %!
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Thermally induced compaction of Pierre shale

P-Wave Velocity mi192-3-leni-2
. . 2700 +—— - Vp_z,3.max )“';‘:";’és ﬁ%: 120
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. . 2600 %“ A
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SINTEF's Shale Rock Physics model: Choosing K, ,=3 & G, = 2.5 GPa,
Vv, (at room temperature) is estimated to 2383 m/s (v;=1024 m/s) for
19 % porosity Pierre Shale

Reducing porosity to 14 % (as at 120 °C), v, increases to 2708 m/s
(without changing K., & G,,,)
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Conclusions

Thermal Rock Physics of Shales

* Relatively strong reduction of V, and V; with temperature (in the absence
of thermally-induced compaction)

 Temperature dependence can be described by Gassmann theory by
assuming a temperature-dependent drained-rock stiffness accounting for
bound-water effects and rock-fluid interaction; better understanding
needed

* Not clear if sonic and seismic velocity show same temperature dependence
as ultrasonic velocities; need for velocity-dispersion measurements

Thermally-induced compaction of shale
* Significant thermally-induced compaction observed during heating of shale
core plugs

* Not clear to what degree thermally-induced compaction would occur in the
subsurface; might have significant impact on caprock integrity and wellbore
stability; better understanding and more systematic studies needed.
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