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Finite Difference Modeling

I Model physical phenomena, e.g. wave propagation.

I Bigger models and more calculations allow higher accuracy.

I Overwhelming memory requirements for 3D.

I Circumvent the memory limitations.



Finite Difference Modeling

I Model physical phenomena, e.g. wave propagation.

I Bigger models and more calculations allow higher accuracy.

I Overwhelming memory requirements for 3D.

I Circumvent the memory limitations.



Finite Difference Modeling

I Model physical phenomena, e.g. wave propagation.

I Bigger models and more calculations allow higher accuracy.

I Overwhelming memory requirements for 3D.

I Circumvent the memory limitations.



Finite Difference Modeling

Model a given differential equation, e.g.:
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I 3-dimensional array for each variable.

I Approximate derivatives by weighted sums.

I Update each value across a small ∆t.



A FDM example
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Seismic FDM

Model the full frequency spectrum of a seismic shot, in a fully
anisotropic medium, in an area corresponding to a single shot:

I Wavelengths of 10m.

I 4m×4m×4m cells.

I 1000 × 1000 × 500 grid cells.

I 24GB of data. (61GB anisotropic.)



The Memory Barrier – Fitting data into RAM

Split the model in smaller parts:
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The Memory Barrier – Data Transfer Slowdown

Moving the data to/from RAM becomes a bottleneck:

Work Speed Time

24 × 2GB 50MB/s 1000s
1.5 · 1011flop 109flop/s 150s

I An 8-fold time increase is not acceptable.

I We want IO time ≤ CPU time.



Breaking the Memory Barrier

1 Correctly calculate all cell updates.

Use overlapping model blocks.

2 Increase the CPU vs IO ratio.

Calculate several time steps per sweep.
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Breaking the Memory Barrier

I C = 200 and L = 4 gives 12 time steps per sweep, or 6 time
steps per read/write.

I Almost the same as the IO / CPU ratio.

I Only 200 × 200 × 500 × 12 × 4 ≈ 1GB.



Results

Tests on a laptop computer, using the 24GB model:

I 1.25GB memory.

I Cycles of 7s CPU – 8s IO.

I 150s per time step.
I 20 000 time steps: 5 weeks on the laptop.

I Reduced 50% by asynchronous IO.
I Time usage proportional to f 4 and v−4

min.
I Corresponds to 3h on a single GPU!
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Conclusions

I Large scale FDM possible without large memory requirements.

I Computational speed is still an issue.
I Need to maintain the CPU vs IO ratio. Factors:

I Faster CPU.
I Faster IO.
I More memory.

I Robust alternative to parallellisation when several modelings
are needed.

I The only cost is code complexity!



Considerations

I Smaller steps halve the memory requirements.

I Eliminate the IO wait with asynchronous IO.

I Share static data within nodes.

I Use GPUs with data streamed from RAM.
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