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Dual-Sensor - Wavefield separation

Dual-sensor towed streamer measures the pressure wavefield and the
vertical velocity field, at the same spatial position.

For the pressure wavefield the two components are given as:

Pup =
1

2
(P − FVz) and Pdown =

1

2
(P + FVz)

where F is angle-dependent scaling factor and it is required because only

Vz is recorded (Widmaier et al., EAGE/SEG, 2009).
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Real example: Conventional streamer versus dual-sensor
streamer

Cenventional streamer (top) and dual-sensor (botton)

The combination of the sensores allows the separation of the up- and

down-going wavefields and thus the removal of the ghost effect. The

removal of the ghost significantly enhances frequency content and

(Widmaier et al., EAGE/SEG, 2009).
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Wavefield separation - Extrapolation and imaging

The upgoing and downgoing pressure wavefields in the
frequency-wavenumber domain can be written in a matrix form as[

Pup

Pdown

]
=

1

2

[
1 −ρω

kz
1 ρω

kz

] [
P
Vz

]
Extrapolation is based on the solution of the one-way wave
equation. The one way wave equation in ω − x domain is:(

∂

∂z
− i

√
ω2

v2
+∇

)
P+ = 0

where ∇ is the Laplician operator.
For one-way algorithm, we can approximate the square-root by:√

ω2

v2
+∇ = Phase-Shift(kx , ω) + Split Step (x , ω) + FFD (x , ω)
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Wavefield separation - Extrapolation and imaging

Two-way propapator is a simples extension of the one-way
propagation.
The two-way acoustic wave equation in the ω − x domain becomes
( Zhang et at.,2005) then(

∂

∂z
− i

√
ω2

v2
+∇

)
P− = ΓP+

where Γ is, in some sense, equivalent to a reflection coffecient and
P− is the upgoing wavefield.
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One-way and two-way simulation

Two layer model - Snapshots
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Imaging

After proper extrapolation of the decomposed monochromatic
wavefields to the desired depth level, an estimate of the reflection
coefficient(s) can be obtained through the application of the
classical Pup/Pdown imaging condition.

Cross-correlation

I1(x , h) =
∑
xs

∑
ω

(Pdown(x − h, ω; xs))∗ Pup(x + h, ω; xs)

Deconvolution

I2(x , h) =
∑
xs

∑
ω

(Pdown(x − h, ω; xs))∗ Pup(x + h, ω; xs)

〈(Pdown(x − h, ω; xs))∗ Pdown(x − h, ω; xs)〉+ ε

where 〈.〉 stands for the smoothing in the image space in the x
direction. Note, we obtain zero offset subsurface images when
h = 0.
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BP-Dataset: One-way and two-way results
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BP Dataset: One-way (PSPI) and RTM results
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Coupled wave equation system

The wave equation can be transformed into two coupled first-order
differential equations in the depth z , and one obtains:

∂

∂z

(
P
∂P
∂z

)
=

(
0 1

−(ω
2

c2 + ∂2

∂x2 ) 0

)(
P
∂P
∂z

)
We can write in a compact notation the wave equation for the field
vector ψ = (P, ∂P∂z )T as

∂ψ(x, ω)

∂z
= Aψ(x, ω)

where the matrix A is given by:

A =

(
0 1

−(ω
2

c2 + ∂2

∂x2 ) 0

)
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Coupled wave equation system

Assuming that the velocity c is constant as a function of depth
with each layer z to z + ∆z , the solution of this equation is given
by:

ψ(x , y , z + ∆z , ω) = eA∆z ψ(x , y , z , ω)

For general case, the exponential term can be computed using
Chebyshev expansion according to

eA∆z =
M∑
k=0

Ck Jk(R)Tk

(
A∆z

R

)

where R = (ω∆z)/cmin and M > R (Tal-Ezer, 1984).
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Tal-Ezer method - Coupled wave equation system

Depth model and velocity in the background
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Tal-Ezer method - Coupled wave equation system

One-way PSPI method
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Tal-Ezer method - Coupled wave equation system

High-cut filter kcut > ω/cmax
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Tal-Ezer method - Coupled wave equation system

High-cut filter kcut > ω/cmax and taper filter
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Differential system in space-frequency domain

The linerized acoustic wave equation in the space-frequency
domain can be written as the following system of coupled
equations 

∇P(x, ω)− iωρV(x, ω) = 0

∇ · V(x, ω)− iω
ρc2(x)

P(x, ω) = 0

where ω denotes the temporal frequency, x = (x , y , z) the
Cartesian coordinates, V = (Vx ,Vy ,Vz) is the particle velocity
vector and P is the pressure.
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Differential system in space-frequency domain

For the depth extrapolation problem it is useful to write these
equations in terms of the vertical velocity Vz and pressure P.{

∂P
∂z = i ω ρVz

∂Vz
∂z = iω

ρc2(x)
P − ∂

∂x

(
1

iωρ
∂P
∂x

)
− ∂

∂y

(
1

iωρ
∂P
∂y

)
In a simplified notation with the operator H2 as:

H2 =

(
ω

c(x)

)2

+ ρ
∂

∂x

(
1

ρ

∂

∂x

)
+ ρ

∂

∂y

(
1

ρ

∂

∂y

)
We can write in a compact notation the wave equation for the field

vector ψ = (P,Vz)T as

∂ψ(x, ω)

∂z
= Aψ(x, ω)
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Generalized phase shift method

The wave equation can be written as

∂ψ(x, ω)

∂z
= M ψ(x, ω) + Q ψ(x, ω)

where the matrix M is chosen independent of z over the interval
z + ∆z ,

M =

(
0 iωρ

− 1
iω ρH

0
2 0

)
with

H0
2 =

(
ω

co

)2

+ ρ
∂

∂x

(
1

ρ

∂

∂x

)
+ ρ

∂

∂y

(
1

ρ

∂

∂y

)
where co and ρ are constant,
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Generalized phase shift method

and Q is given as:

Q =

(
0 0

−w
iρ

(
1

c(x)2 − 1
c2
o

)
0

)
=

(
0 0
q 0

)
Since M and e−M z commute we have (Maji and Kouri, 2011)

∂

∂z

(
exp(−M z)ψ(x, ω)

)
= exp(−M z)Q ψ(x, ω)

Next, integrating from z to z + ∆z , the exact solution is given by:

ψ(x , y , z + ∆z , ω) = exp(M∆z)ψ(x , y , z , ω)

+

∫ z+∆z

z
dz ′ exp[(z + ∆z − z ′) M]Q(x , y , z ′, ω)ψ(x , y , z ′, ω)
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Generalized phase shift method

If the simple trapezoidal rule is used, we obtain

ψ(x , y , z + ∆z , ω) =

(
I − ∆z

2
Q(x , y , z + ∆z , ω)

)−1

exp(M∆z)

(
I +

∆z

2
Q(x , y , z , ω)

)
ψ(x , y , z , ω)

where I is the 2x2 identity matrix.

We note that due to the structure of Q, the computation of the
inverse is trivial:(
I − ∆z

2
Q(x , y , z + ∆z , ω)

)−1

=

(
1 0

∆z
2 q(x , y , z + ∆z , ω) 1

)
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Generalized phase shift method

Using P and Vz , we obatin that

(
P
Vz

)
z+∆z

=

(
1 0

∆z
2 q(x , y , z + ∆z , ω) 1

)
exp(M ∆z)(

1 0
∆z
2 q(x , y , z) 1

)(
P
Vz

)
z

When P(x , y , z , ω) and Vz(x , y , z , ω) are known,
P(x , y , z + ∆z , ω) and Vz(x , y , z + ∆z , ω) can be obtained from
this equation in a step by step process.
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Elimination of exponentially increasing evanescent energy

In order to eliminate the unstable evanescent component in the
extrapolation procedure, we rewrite the M matrix via an eigen
decomposition in the following way:

M = LΛ L−1

where L represents the eigenvectores, and Λ is the eigenvalue
matrix

Λ =

(
−ikz 0

0 ikz

)
.

The vertical wavenumber kz is

kz =


√

(ωc )2 − (k2
x + k2

y ), if
√

(k2
x + k2

y ) ≤ |ωc |,

i
√

(k2
x + k2

y )− (ωc )2, if
√

(k2
x + k2

y ) > |ωc |.
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Elimination of exponentially increasing evanescent energy

The eigenvector matrix of M may be chosen as ( Claerbout, 1976;
Ursin et al., 2012)

L =

(
1 1
− 1

Z − 1
Z

)
.

with inverse eigenvector matrix

L−1 =

(
1 −Z
1 Z

)
.

Here,
Z =

ρω

kz

Then, for kz real,

eM∆z = L eΛ ∆z L−1 =

(
cos(kz∆z) Z i sin(kz∆z)
i
Z sin(kz∆z) cos(kz∆z)

)
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Elimination of exponentially increasing evanescent energy

This is stable if kz is real.

For kz imaginary, kz = i |kz |, we remove the unstable mode by a
projection operator (Maji and Kouri, 2011; Sandberg and Beylkin,
2009), and we use

eM∆z = L

(
0 0

0 e−|kz |∆z

)
L−1 =

1

2

(
1 Z
1
Z 1

)
e−|kz |∆z

where now
Z =

ρω

i |kz |
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Source wavefields

For seismic modeling we may start with a point source where the
downgoing wavefield is

D
′
0 =
−2πS(ω)

ikz
e−i (kxxs+kyys)

Here the S(ω) is the source signature and (xs , ys) is the source
position.
For seismic imaging we follow Arntsen et al. (2012) and start with

D0 =
1

(D
′
0)∗

=
ikz

2πS(ω)∗
e i (kxxs+kyys)

where ∗ denotes complex conjugate.
In both cases the initial values of the modeling equations are(

P
Vz

)
0

= L

(
D0

0

)
=

(
D0
−kz
ρω D0

)
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Full wavefield imaging

Next, we start with the recorded data P0 and Vz0 which we
downward continue to get Pd and Vzd .

At a certain depth level we compute the upgoing wavefield from
the data

Ud =
1

2
(Pd − Z Vzd)

and the downgoing wavefield from the source

Us =
1

2
(Ps + Z Vzs)

A common-image gather for a single shot is

R(p, x, z) =

∫ ∫
Ud(ω, x +

h

2
, z)D∗s (ω, x− h

2
, z) e−iωp·h dh dω,

where h = (hx , hy , 0) is the horizontal offset coordinate and
p.h = pxhx + pyhy .
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Conclusions

We are proposing a two-way propagation method for P and
Vz wavefields (Generalized phase shift method).

Elimination of unstable evanescent component using a an
eigen decomposition.

This method is very promise and more work is needed.

27 / 28



cpgg

ufba

Acknowledgments

ROSE Project

CPGG/UFBA and INCT-GP/CNPq.

28 / 28


