Curved edge diffraction modeling

Tijmen Jan Moser (MGS) Jan Pajchel (Statoil)

ROSE Meeting Trondheim April 2012

Outline

- Diffractions introduction
- •Diffraction analysis, imaging, modeling, inversion
- Diffraction modeling ray-Born
- Edge and tip diffractions
- Curved edge diffraction modeling
- •Examples synthetic, GOM-B

Diffractions – introduction

Reflections vs.
Diffractions

Traité de la Lumière, Christiaan Huygens ('s-Gravenhage, 1629-95)

Diffractions – introduction

Why diffractions?

Geology – structural interpretation, superresolution: faults, pinch-outs, small-size scattering objects

Physics – conventional processing/imaging flow uses specular reflections, diffractions are not well preserved

"Diffractions are the abandoned stepchildren of traditional seismic processing and imaging!" (Khaidukov, Landa & Moser, Geophysics, 2004)

Diffractions – analysis, imaging, modeling, inversion

doit pas communiquer son mouvement seule prochaine, qui est dans la ligne droite tirée d mais qu'elle en donne aussi nécessairement à la torpose.

De so tour il se t

part

touc

What can we do with diffractions?

Diffraction ...

... Analysis

... Imaging

... Modeling

... Inversion

Diffractions – analysis, imaging, modeling, inversion

Diffractions – analysis, imaging, modeling, inversion

 X_0 hor. position, α fault azimuth, δ hor. shift, Δh fault amplitude, ϕ reflector dip a) modeled b) observed seismograms

Diffraction modeling

modeling - Ray-Born integral

$$U(\mathbf{s}, \mathbf{r}, t) = \int A(\mathbf{s}, \mathbf{x}, \mathbf{r}) V(\mathbf{x}) w(t - T(\mathbf{s}, \mathbf{x}, \mathbf{r})) d\mathbf{x}$$

- Linear Inversion, migration + primaries only
- Ray-theory travel time T(s,x,r) and amplitude A(s,x,r) in smooth background
- Volume integral over scattering potential V(x)
- No smoothness constraints for V(x), only integrability
 - ightarrow Diffractions

Diffraction modeling

Ray-Born modeling - example

Complicated fault model \rightarrow Edge diffractions + Caustic diffractions

Edge wave theory

Polarity change across reflection tangent point

ray-Born (shot at 4km)

Plane reflection

Edge diffraction

Tip diffraction

3D line/tip diffraction

Time slices t=2.0, 2.2s

Line diffractor

GPR data over Cassis quarry (fracture and karst network)

GPR data time slice (zero offset)

Fractures

Semi-circles

Curved edge

Zero offset → Stacked section

branch +

Caustic

Curved edge diffractions – analytic Envelope of diffraction hyperboloids

Consider a 3D line diffractor given by the curve

$$\mathbf{x}(q) = (x_1(q), x_2(q), x_3(q))^T , \qquad (1)$$

where q is a parameter along the curve and \mathbf{x} the spatial location. We assume a constant model with velocity equal to one. Then, point diffraction surfaces at each point q are given by the hyperboloids

$$\mathbf{h}(u,v,q) = \begin{bmatrix} h_1(u,v,q) \\ h_2(u,v,q) \\ h_3(u,v,q) \end{bmatrix} = \begin{bmatrix} x_1(q) + u \\ x_2(q) + v \\ \sqrt{u^2 + v^2 + x_3(q)^2} \end{bmatrix} . \tag{2}$$

In (2), u, v are parameters pointing in x_1, x_2 -direction. The apices of the hyperboloids are located at the line diffractor: $\mathbf{h}(0, 0, q) = \mathbf{x}(q)$.

h(u, v, q) is a one-parameter family of 3D surfaces for parameter q. Its envelope is given by combinations of u, v, q satisfying

$$\det[\mathbf{h}_u \ \mathbf{h}_v \ \mathbf{h}_q] = 0 \ . \tag{3}$$

Curved edge diffractions – analytic Envelope of diffraction hyperboloids

Expanding (3) gives

$$0 = \det[\mathbf{h}_{u} \ \mathbf{h}_{v} \ \mathbf{h}_{q}] = \det \begin{vmatrix} h_{1u} & h_{1v} & h_{1q} \\ h_{2u} & h_{2v} & h_{2q} \\ h_{3u} & h_{3v} & h_{3q} \end{vmatrix} = \det \begin{vmatrix} 1 & 0 & x'_{1} \\ 0 & 1 & x'_{2} \\ u/h_{3} & v/h_{3} & x_{3}x'_{3}/h_{3} \end{vmatrix}$$
$$= (x_{3}x'_{3} - vx'_{2} - ux'_{1})/h_{3} , \qquad (4)$$

where $x_i' = dx_i/dq$ (i = 1, 2, 3). Therefore for fixed q, (3) is a line in the u, v-plane. By parametrizing it as

$$u(w) = x_1' x_3 x_3' / x_n + w x_2', \quad v(w) = x_2' x_3 x_3' / x_n - w x_1', \quad x_n = x_1'^2 + x_2'^2, \tag{5}$$

the line diffraction surface is given by h(u(w), v(w), q) and (5).

For a fixed q, h(u(w), v(w), q) is a hyperbola as function of w. For a horizontal line diffractor, $x_3' = 0$, and the hyperbola has its apex w = 0 on the diffraction line. For a dipping line diffractor this is not the case.

Note: envelope does not contain diffractor

Dipping circular edge

Note: caustics

Flat elliptical edge

Dipping elliptical edge

Curvature going to infinity + introducing torsion

Curved edge diffractions - Salt diapirs

Diffractions from salt diapirs:

- How to model them?
- Can they support interpretation?
- Can they distinguish between:
 - Edge/tip diffractions fault tectonic
 - Convex bodies erosional tectonic

Curved edge diffractions – GOM-B Salt diapir model

Extraction of intersection of salt dome with 3km/s iso-velocity surface

Curved edge diffractions – GOM-B Salt diapir model

Time slices

Curved edge diffraction modeling – Conclusions

- Ray-Born versatile modeling tool for diffractions
- Diffraction-based workflow as a complement to reflection-based workflow
- Edge and tip diffractions elementary building elements for composite diffractions
- Importance of curved edge modeling (GPR, Salt diapir, ...)
- Impact on interpretation

Acknowledgments

We thank Statoil for permission to show the GOM-B data and model.

We thank Mark Grasmueck (Miami Univ. Comparative Sedimentology Lab) for making available the GPR data.

Events

Dedicated session 'Case Studies in Diffraction Imaging and Interpretation', EAGE Copenhagen 2012

Workshop 'Diffraction Methods for Fault and Fracture Detection', SEG Las Vegas 2012