Seismic Velocity Dispersion and Attenuation

Andreas Bauer
SINTEF Petroleum Research, Trondheim

Introduction

Dispersion/attenuation mechanisms

How to measure dispersion/attenuation

Conclusions and outlook

ROSE 2012 — Geomechanics Course - Dispersion S I NTEF B NTNU



Seismic Dispersion and Attenuation - Introduction

Attenuation by scattering

Intrinsic attenuation

* Intrinsic attenuation in the subsurface is primarily due to rock-fluid
interaction (viscous flow within the rock matrix)

 Intrinsic attenuation depends on permeability

* "Holy grail": Permeability from seismic
Problem: - How to differentiate between scattering and local-flow
induced attenuation
- Several intrinsic attenuation mechanisms
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Seismic Dispersion and Attenuation - Introduction

Relation between attenuation and velocity dispersion (v = v(f))

Seismicwave Ag e ¥ g™ @X gTlwt with w = 27f

\ J
|

i(k+ia)x complex wavenumber with
€ real and imaginary part

f: frequency

w
Phase velocity v = ™ (real part) k: wavenumber
o attenuation coefficient
w _ . :
Attenuation a=_ Q L (imaginary part) Q: Quality factor

kv, Q are functions of frequency

ROSE 2012 — Geomechanics Course - Dispersion S I NTEF B NTNU



Seismic Dispersion and Attenuation - Introduction

Frequency dependencies of real and imaginary parts of a response
function of a physical system (v and Q |n our case) are related by the

Kramers-Kronig relation: xz(w) = ——’P‘/m s al 'P/m — .=
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Seismic Dispersion and Attenuation - Introduction

Easy example: Dynamic stiffness of a rock

_ _ _ Equivalent description
Sinusoidal loading of sample (visco-elastic model)

Sleeve around
sample C, \:J

Small drainage hole |
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Seismic Dispersion and Attenuation - Introduction

(A) Low-frequency limit (B) High-frequency limit
* Fluid flows in and out of sample « Excitation too fast for drainage =
- Pore pressure is constant no flow
. Rock stiffness is given by matrix * Pressure build-up in pore fluid
stiffness (drained stiffness), during loading
M = Mgy, = ﬁ  Enhanced rock stiffness, M = Cil

* No energy dissipation (1/Q = 0) No energy dissipation (1/Q = 0)

Dissipated energy is given by: [Fdx = [F % dt = [F xdt

F x \+ '/J}\Jr S o [Fxdt=0
i/
VR

x P
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Seismic Dispersion and Attenuation - Introduction

(C) Intermediate frequencies

« Force and displacement not in phase (phase shift d)
= finite energy dissipation (1/Q > 0)

 Maximum attenuationat f = f,. = Ti with 7. the

characteristic drainage time

77: 1
S Q= = 0)

" tané
At ++ 4 _ /_(B)-
F, x /\ /\ > [Fxdt+#0 M (C)
v o
F

x N 1/Q

Extreme case: 6 =

Log (frequency / Hz)

ROSE 2012 — Geomechanics Course - Dispersion S INTEF B NTNU



Seismic Dispersion and Attenuation - Introduction

Measurement with water-saturated sandstone
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Seismic Dispersion and Attenuation - Introduction

Relationship between acoustic wave velocities
and rock properties

Acoustic p and s-wave velocities depend on rock stiffness and density

V = M [K+3u M: p-wave modulus
" Np \ »p K: bulk modulus
u: Shear modulus
p: Density

V. =

S

ISRIRS
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Seismic Dispersion and Attenuation - Introduction

Where is it important to consider seismic
dispersion and attenuation?

= Velocity models based on Velocity unrelaxed, stiff
laboratory measurements with v \\ Measured
core material at ultrasonic i velocity
frequencies _
relaxed, soft Velocity at
_ ~ seismic
10 Attenuation frequencies
l l l I I
4 2 0 2 4 6
Log (frequency / iz) t
. : : 0n = o 9
Personal opinion: Upscaling effects are in Cé “;J o S
most cases larger than velocity-dispersion s p=2 2
effects (at least for sandstones) 3 8 3 %
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Seismic Dispersion and Attenuation - Introduction

Where Is it Important to consider seismic
dispersion and attenuation?

Reservoir surveillance, time-lapse seismic

Stress, temperature, and saturation can have significant impact on velocity
dispersion, which needs to be accounted for in rock-physics models for
guantitative interpretation of seismic data (inversion for temperature, pressure
and stauration changes)

=N

Velocity - unrelaxed, stif

Areas of application
e Thermal EOR High mobility
(low viscosity,

e CCS relaxed, soft high T)

Attenuation
1/Q —/\|
| L

-4 -2 0 2 4 6
Log (frequency / Hz)
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Dispersion/Attenuation Mechanisms

e "Biot" flow Transition between viscous and inertial flow in pore space

Biot (1956) fet fsf

° —
; —3

* Relatively small effect in most cases (~ 2%)

¢ H
p K

ol B

fe =

« Characteristic frequencies usually in the ultrasonic range
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Dispersion/Attenuation Mechanisms

* Squirt flow Sl N |
Dvorkin, Mavko, Nur (1995)

h\’ K, 1
fo=\z) ==
n n

f. is typically in the
ultrasonic range I I

micro crack
(high compliance)

pore
(low compliance)

(A) Slow loading (B) Fast loading
* Flow from * Reduced local
cracks into flow
Ly I pores - Stiff response
T T4\ « Softresponse of rock

of rock

SINTEF ® NTNU
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Dispersion/Attenuation Mechanisms

e Double porosity Pride and Berryman (2003) Both model
oth models are

conceptually similar
o Patchy saturation  White (1975), Johnson (2001)

K
N_f-
fC~¢L2

~ ==

Inclusions of different porosity
(i.e. stiffness) or fluid saturation
(e.g. compressible gas
bubbles), with L «< wavelength
of seismic wave

= |local flow on meso scale
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Dispersion/Attenuation Mechanisms
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Dispersion/Attenuation Mechanisms

Several other mechanisms, including:

« Grain-to-grain movement (important at teleseismic frequencies)
Jackson and Paterson (1986)

» Visco-elasticity of pore fluids (e.g. heavy oil or kerogen)
Das and Batzle (2008); Kato, Onozuka, Nakayama (2008)

* Viscous shear relaxation (typically at ultrasonic frequencies)
O'Connell and Budiansky (1977); Vo-Thanh (1990)

» Fractures (related to double-porosity model)
Maultzsch, Chapman, Liu, Li (2003)

* Rheology of bound water in shales (not understood yet)
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Measuring seismic dispersion/attenuation

Direct measurements

Only field measurements
possible because of large
wavelength at seismic
frequencies

Figure 3. Attenuation and dispersion predicted by the
double-porosity model of Pride and Berryman [2003a]
(the solid curves) as compared to the data of Sams et al.
[1997] (rectangular boxes). The number of Q™' estimates
determined by Sams et al [1997] falling within each
rectangular box are 40 VSP, 69 cross-well, 854 sonic log,
and 46 ultrasonic core measurements. A similar number of
velocity measurements were made. These various measure-
ments come from different depth ranges at their test site.

from Pride, Berryman, Harris (2004)
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Measuring seismic dispersion/attenuation

Indirect measurements

Determine velocities from dynamic rock stiffness

V, = /M with M (f)=
o,

S

v = |&
o,

Small strain amplitudes (< 10-) are required

with  u(f)=

El-v)

E

2+2v

=. 10*|Reservoir Laboratory plastic (failure)
<] Compact. RockDeform (irreversible)
L
(]
= ) _
E 107 “static” < > “dynamic”
(=} (isothermal) (adiabatic)
=
<L
o T
Thermal Seismics i~ Logging
5 Relaxation F'E’SE?
reversible)
e )
v 100 }
102 1c? i 10 108

FREQUENCY (Hz)
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Measuring seismic dispersion/attenuation

Indirect measurements

Techniques:
(A) Excitation of eigenfrequencies (resonances)
 Resonant-bar technique

« Differential Acoustical Resonance Spectroscopy (DARS)
(B) Ecitation of forced oscillations
« Torsional excitation

e Axial excitation
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Seismic-frequency techniques - Resonator techniques

Split Hopkinson Resonant Bar (SHRB) Test

Nakagawa,

Rock/sediment core .
/ Rev. Sci. Instr. (2011)
Long sample |
I
" Displacement
Short sample distribution
A

Composite
sample ‘ : |

Acrylic core (D=1.5", H=3.0")

spoctml ampituce (dBY)

experimental Resonance frequency
.f numerical Apparent o _LAT(_ 1 o . .o
i attenuation 2 fc | 207

2000 4000 Bo00 BOOG
requmncy (Hr)
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Seismic-frequency techniques - Resonator techniques

* Introduce small rock sample in a fluid (gas)
filled resonator

 Measure perturbed resonance curve as a
function of sample position

* Invert data for dynamic stiffness of rock
(real and imaginary part)
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Seismic-frequency techniques - Forced Oscillator Techniques

Torsional forced oscillation method
Jackson and Paterson (1986)

Implementation within
internally heated gas
apparatus: P = 200 MPa

Tto 1300 C
oscill’n periods 1-1000 s | Fiegg sl
shear strains < 10° Al 1 F vent
. Temperature
APPLIED TORQUE . —
_steel
RESULTANT Lo sin wt Jgﬁ‘}i(neé
STRAINS L
(Lo/Gr)sin(wt-0) | [ | & NAR B M- """ Specimen -
[ 1/F(')=tan6 } ----- 30 x 12 mm-
Specimen Lucalox
alumina
torsion
rod
[(LOIGS) sin wt}
Elastic ste.el
standard torsion
rod Y
vent
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Seismic-frequency techniques - Forced Oscillator Techniques

Spencer (1981)
Dispersion and attenuation of

/7 5;{ 1/ dry and saturated sandstone
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Seismic-frequency techniques - Forced Oscillator Techniques

Batzle, Han, Hofmann (2006):

Use strain gauges to measure
strains in axial and radial direction
in a core plug and a reference
sample (Al) both excited by a
sinusoidal force in axial direction

100 8
—>

Sample horizontal

Aluminum {Poisson’s ratio)

50

Amplitude (mV)
=}
1

Sample vertical
{Young's model}

-100

00 01 02 0.3
Time (s)
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Saturation dependence of dispersion/attenuation

Saturation effects in sandstones

5 Hz - 50 Hz -+ 75 Hz - 200 Hz Ignoring dispersion
o0 M- 1000 Hz 281000 Hz - 2500 He effects can result in
[ .
I wrong estimates of
: saturation changes
»E Ultrasonic frequencies based on sonic Iogs
-
_.3_"-1
L&)
o
2
2.0 : : : :
0 20 40 60 80 100

Saturation (%)

Batzle, Han, Hofmann (2006)
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Temperature dependence of dispersion/attenuation

Heavy-oil saturated Uvalde carbonate

Athabasca heavy-oil sands
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Frequency [Hz]

Bauer, Korndorffer, van der Linden (2011)

Oil viscosity decreases with temperature
(by several orders of magnitude)
= f. shifts to higher frequencies
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Temperature dependence of dispersion/attenuation

Velocity dispersion in heavy-oil
sands caused by micro cracks?

Locked sand: large contact areas
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Double-porosity model
Pride, Berryman, Harris (2004)

ultrasonic
3300 :
100000 cp .
w 3200} 200 cp 22°C
£ 20 cp
2 3100} 1
8 seismic
< 3000} ]
22°C
2900 0 2 l4 6
10 10 10 10
0.06
_0.04¢
o
—
0.02}
0 0 2 4 6
10 10 10 10

Frequency [Hz]

Input parameters: Radius of penny-shaped
inclusion = 0.9 mm; aspect ratio = 3-10%;
volume fraction of inclusions = 0.03%
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Dispersion in Shales

o mo-wemcwid  © SONIC [0QS

S a wemwa® o Ultrasonics

O UNpS0 = ultrasonic Vp
horizontal

oo e * Dynamic stiffness
I N = N o we-wmmcwan o Microindendation

—8—Vp52 = Vp at 52 deg

* Indications (few studies only!) for strong dispersion in shales
» Dispersion mechanisms in shales not understood yet — related to bound water?
3.2 T T T N -
. . . vels::ilties :::‘;5::': o0 = veril . R
West African shale i E0 O] 8-Vt =vp 4 dg Integration of different
e e rTeTees T i ovps2 g O oo techniques:
| | I I wpss @ —@— V51 = Vs Fast
| | | | o e Seismic/VSP
! i y T el

Phase Velocity (km/s)

® LogVps2 = well log Vp at 52
deg

@ UVp52 = ultrasonic Vp at 52
deg

® V5P Vpd = VSP Vp vertical

1000000

Frequency (Hz)

Duranti, Ewy, Hofmann (2006)
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Dispersion in Shales - Temperature dependence

Typical temperature dependence
of ultrasonic velocities in shales

(schematic)

50 100 150
T[deg. C]

Decrease due to pore-
pressure increase

Decrease due to fluid-
compressibility changes

Thermally-induced reduction
of frame stiffness?
!

Temperature dependence

Triaxial compaction tests: o _
v of velocity dispersion

Nearly temperature-
independent frame stiffness

Temperature changes in shale formations (e.g. caprock of
heated reservoir) could be greatly overestimated by ignoring
dispersion effects and their temperature dependence

ROSE 2012 — Geomechanics Course - Dispersion

SINTEF ® NTNU



Conclusion

e Several mechanisms for velocity dispersion
and attenuation have been identified and
theoretically described

e Importance for seismic is still under debate
* Few reliable experimental studies

* Detection of velocity dispersion/attenuation in
seismic surveys has in principle huge potential
(permeability from seismic, fracture sizes,
etc.). However, there is no deployable tool yet.
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