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• Introduction 

• Dispersion/attenuation mechanisms 

• How to measure dispersion/attenuation 

• Conclusions and outlook 
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Seismic Dispersion and Attenuation - Introduction 

Attenuation by scattering 

Intrinsic attenuation 

• Intrinsic attenuation in the subsurface is primarily due to rock-fluid 
interaction (viscous flow within the rock matrix) 

• Intrinsic attenuation depends on permeability 

• "Holy grail": Permeability from seismic  
     Problem: - How to differentiate between scattering and local-flow  
                       induced attenuation 
                     - Several intrinsic attenuation mechanisms 
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Seismic Dispersion and Attenuation - Introduction 

complex wavenumber with 
real and imaginary part 

k, v, α, Q  are functions of frequency 
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Seismic Dispersion and Attenuation - Introduction 

Frequency dependencies of real and imaginary parts of a response 
function of a physical system (v and Q in our case) are related by the  

Kramers-Kronig relation: 
 

Velocity dispersion and 
attenuation in rocks 

General features: 
• Velocity increases with frequency 
• Velocity increases around 

characteristic frequencies, fc 

• Attenuation, 1/Q, is highest at fc 

fc,1 fc,2 
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Seismic Dispersion and Attenuation - Introduction 

Easy example: Dynamic stiffness of a rock 

Small drainage hole 

Sleeve around 
sample 

Equivalent description 
(visco-elastic model) Sinusoidal loading of sample 

pp 

C1 

C2 
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Seismic Dispersion and Attenuation - Introduction 
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Seismic Dispersion and Attenuation - Introduction 
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Seismic Dispersion and Attenuation - Introduction 
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Measurement with water-saturated sandstone 
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Seismic Dispersion and Attenuation - Introduction 

Relationship between acoustic wave velocities 
and rock properties 

Acoustic p and s-wave velocities depend on rock stiffness and density  
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M: p-wave modulus 
K: bulk modulus 
µ: Shear modulus 
ρ: Density 
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Seismic Dispersion and Attenuation - Introduction 

Where is it important to consider seismic 
dispersion and attenuation? 

 Velocity models based on 
laboratory measurements with 
core material at ultrasonic 
frequencies 

Personal opinion: Upscaling effects are in 
most cases larger than velocity-dispersion 
effects (at least for sandstones) 
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Seismic Dispersion and Attenuation - Introduction 

Where is it important to consider seismic 
dispersion and attenuation? 

Reservoir surveillance, time-lapse seismic 

Stress, temperature, and saturation can have significant impact on velocity 
dispersion, which needs to be accounted for in rock-physics models for 
quantitative interpretation of seismic data (inversion for temperature, pressure 
and stauration changes)      
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Areas of application 

• Thermal EOR 

• CCS 
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Dispersion/Attenuation Mechanisms  

 "Biot" flow 
Biot (1956) 

• Relatively small effect in most cases (∼ 2%) 

• Characteristic frequencies usually in the ultrasonic range 

Transition between viscous and inertial flow in pore space 

f < fc f > fc 
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Dispersion/Attenuation Mechanisms  

 Squirt flow 
Dvorkin, Mavko, Nur (1995) 

fc is typically in the 
ultrasonic range 

Stress 

(A) Slow loading (B) Fast loading 

micro crack  
(high compliance) 

pore  
(low compliance) 

• Flow from 
cracks into 
pores 

• Soft response 
of rock 

pcrack > ppore 

• Reduced local 
flow 

• Stiff response 
of rock 

R 

h 
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Dispersion/Attenuation Mechanisms  

 Double porosity 

 Patchy saturation 

Both models are 
conceptually similar 

Pride and Berryman (2003) 

White (1975), Johnson (2001) 

L 
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Dispersion/Attenuation Mechanisms  

Unified double-porosity 
model 

Pride, Berryman, Harris (2004) 

Biot mechanism 

Characteristic frequency 
can vary over several 
orders of magnitude, 
including the seismic range 
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Dispersion/Attenuation Mechanisms  

Several other mechanisms, including: 

• Grain-to-grain movement  (important at teleseismic frequencies) 

• Visco-elasticity of pore fluids (e.g. heavy oil or kerogen) 

• Viscous shear relaxation (typically at ultrasonic frequencies) 

• Fractures (related to double-porosity model) 

• Rheology of bound water in shales (not understood yet) 

Jackson and Paterson (1986) 

Das and Batzle (2008); Kato, Onozuka, Nakayama (2008) 

Maultzsch, Chapman, Liu, Li (2003) 

O'Connell and Budiansky (1977); Vo-Thanh (1990) 
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Measuring seismic dispersion/attenuation 

Direct measurements 
Only field measurements 
possible because of large 
wavelength at seismic 
frequencies  

from Pride, Berryman, Harris (2004) 
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Measuring seismic dispersion/attenuation 

Indirect measurements 
Determine velocities from dynamic rock stiffness 
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M: p-wave modulus 
µ: Shear modulus 
E: Young's modulus 
ν: Poisson's ratio  
ρ: Density 

Small strain amplitudes (< 10-6) are required 
Batzle, Han, 
Hofmann (2006) 
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Measuring seismic dispersion/attenuation 

Indirect measurements 

Techniques: 

(A) Excitation of eigenfrequencies (resonances)  

• Resonant-bar technique 

• Differential Acoustical Resonance Spectroscopy (DARS) 

 

(B) Ecitation of forced oscillations 

• Torsional excitation 

• Axial excitation 
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Seismic-frequency techniques – Resonator techniques 

Nakagawa,  
Rev. Sci. Instr. (2011) 



ROSE 2012 – Geomechanics Course - Dispersion 

Seismic-frequency techniques – Resonator techniques 

Harris, Quan, Xu (2005) 

• Introduce small rock sample in a fluid (gas) 
filled resonator 

• Measure perturbed resonance curve as a 
function of sample position 

• Invert data for dynamic stiffness of rock 
(real and imaginary part)  
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Seismic-frequency techniques – Forced Oscillator Techniques 

Torsional forced oscillation method 
Jackson and Paterson (1986) 

Implementation within 
internally heated gas 

apparatus: P = 200 MPa 
T to 1300 C 

oscill’n periods 1-1000 s 
shear strains < 10-5 
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Seismic-frequency techniques – Forced Oscillator Techniques 

E =  Stress, σ  /  strain, ε 

Actuator 

1-1000 Hz 

Spencer (1981) 
Dispersion and attenuation of 
dry and saturated sandstone 

Experimental data are 
fitted by Cole-Cole model 
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Batzle, Han, Hofmann (2006): 

Use strain gauges to measure 
strains in axial and radial direction 
in a core plug and a reference 
sample (Al) both excited by a 
sinusoidal force in axial direction  

δ 

1/Q = tan δ 

Seismic-frequency techniques – Forced Oscillator Techniques 

 

Strain gauges 
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Saturation dependence of dispersion/attenuation 

Batzle, Han, Hofmann (2006) 

Saturation effects in sandstones 

Gassmann model 
(low-frequency limit) Fr

eq
ue

nc
y 

Ignoring dispersion 
effects can result in 
wrong estimates of 
saturation changes 
based on sonic logs 
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Batzle, Han, Hofmann (2006) 

Heavy-oil saturated Uvalde carbonate 

Temperature dependence of dispersion/attenuation 

 

Oil viscosity decreases with temperature 
(by several orders of magnitude)  
 fc shifts to higher frequencies 

Athabasca heavy-oil sands 

Bauer, Korndorffer, van der Linden (2011) 
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Temperature dependence of dispersion/attenuation 
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100000 cp
200 cp
20 cp

Locked sand: large contact areas   

Pore 

Micro crack 

Double-porosity model 
Pride, Berryman, Harris (2004) 

22°C 

55°C 

22°C 

seismic 

ultrasonic 

Input parameters: Radius of penny-shaped 
inclusion = 0.9 mm; aspect ratio = 3⋅10-4; 
volume fraction of inclusions = 0.03%  

Velocity dispersion in heavy-oil 
sands caused by micro cracks? 
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Dispersion in Shales 

• Indications (few studies only!) for strong dispersion in shales 

• Dispersion mechanisms in shales not understood yet – related to bound water? 

Duranti, Ewy, Hofmann (2006) 

West African shale Integration of different 
techniques: 
• Seismic/VSP 
• Sonic logs 
• Ultrasonics 
• Dynamic stiffness 
• microindendation 
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Dispersion in Shales – Temperature dependence 

Decrease due to pore-
pressure  increase 

Decrease due to fluid-
compressibility changes 

Thermally-induced reduction 
of frame stiffness? 

Vp 

Typical temperature dependence  
of ultrasonic velocities in shales 
(schematic) 

Nearly temperature-
independent frame stiffness  

Temperature dependence 
of velocity dispersion 

Triaxial compaction tests: 

Temperature changes in shale formations (e.g. caprock of 
heated reservoir) could be greatly overestimated by ignoring 
dispersion effects and their temperature dependence  
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Conclusion 

• Several mechanisms for velocity dispersion 
and attenuation have been identified and 
theoretically described 

• Importance for seismic is still under debate 

• Few reliable experimental studies 

• Detection of velocity dispersion/attenuation in 
seismic surveys has in principle huge potential 
(permeability from seismic, fracture sizes, 
etc.). However, there is no deployable tool yet.  
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