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Operational problems: 
⇒ Offshore platform safety 

⇒ Environmental challenges 

⇒ Casing collapse in reservoir 

⇒ Associated seismicity 

Solutions: 
•Account for possible compaction & subsidence in platform and casing design. 

•Pressure maintenance. 

•Platform jack-up ($$$). 

 Compaction is also a drive mechanism ⇒ Enhanced recovery. 

Reservoir compaction &  
Surface subsidence  



Biot-Hooke’s law 
• Utilizing the effective stress principle, we can use 

Hooke’s law as for solids – but with effective stresses 
replacing total stresses, and frame moduli replacing 
solid moduli (only normal stresses shown): 
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Remember… 
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Uniaxial Reservoir Compaction 
Usual assumptions:  

•  (Linear) Elastic rock behaviour. 

• Uniaxial compaction (no lateral strain). 

• Vertical stress fully carried by reservoir (no arching). 

• (Often Biot’s α  is set =1). 
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Hooke’s 
law ⇒ 

 ∆h  change in reservoir thickness (<0: compaction) 
 εv  vertical strain 
 h  reservoir thickness 
 ∆pf  pore pressure change  
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Uniaxial Reservoir Compaction 
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Predicted lateral stress change: 
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Reservoir Stress Path 
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We assumed the reservoir to carry the full weight of the 
overburden & uniaxial compaction during depletion – only 
valid if the reservoir is infinitely thin & wide (”pancake”) 
 
In general cases, we need to define stress path coefficients 
(as suggested by Hettema et al., 2000): 
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Reservoir Stress Path 

• General relationship between stress path coefficients: 

 

 

 

 

• Effective stress path coefficients: 
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Reservoir Stress Path:  
Impact on Compaction 

•  Within limits of linear poroelasticity, reservoir compaction is 
given by: 

h: reservoir thickness 

α: Biot coefficient 

Efr, νfr: Drained Young’s modulus & Poisson’s ratio for reservoir rock 
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Reservoir Stress Path 
 

• The stress path is controlled by 
– Depleting reservoir geometry (shape; inclination) 
– Elastic contrast between reservoir and surroundings 
– Non-elastic / Failure processes 

 
• Models: 

– Analytical: Rudnicki’s ellipsoidal inclusion model (1999) 
– Analytical: Geertsma’s Nucleus of Strain model (1973) 
– Numerical: Finite Element Method (Morita et al, 1989; Mulders, 2003);          

Discrete Element Method (Alassi PhD Thesis NTNU 2008) 
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Reservoir Stress Path 
 • Rudnicki (1999): 

 
– The reservoir is assumed to be an ellipsoidal poroelastic inclusion in an 

infinite solid medium (short axis || vertical). 
 
• Limits validity to reservoirs that are deeper than their lateral extent 
 

– The strains resulting from pore pressure change is calculated for a stress-
free reservoir. 

 
– The stresses required to restore the original reservoir shape & size are 

calculated. 
 
– These stresses are added to the initial in situ stresses. 

 
– Elastic contrast between reservoir and surroundings permitted. 
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Reservoir Stress Path 
 

• Solutions are expressed in terms of the aspect ratio e=h/2R 
(reservoir thickness divided by diameter). 

• Note that h and R refer to the dimensions of the zone where 
pore pressure actually changes (e.g. depleting zone). 

 

 

 

• For small values of e, these equations can be approximated as: 
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Reservoir Stress Path 

Stress path coefficients from Rudnicki’s model;                  
Reservoir is elastically matched to the surroundings 
(Poisson’s ratio = 0.20) 

∆h 

R 
e=∆h/2R 

h 

e=h/2R 

Only for [European] pancake 
shaped reservoir (e=0) is the 
uniaxial strain & no arching 
assumption fulfilled. 
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Reservoir Stress Path:  
Impact on Compaction 
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Compaction 
decreases with 
increasing 
reservoir 
aspect ratio, 
reflecting 
enhanced 
arching 

Based on Rudnicki (1999) 

Elastically matched reservoir & surroundings 
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Reservoir Stress Path:  
Impact on Compaction 
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Effect of elastic (shear modulus) 
mismatch:  

  Soft reservoir: Enhanced arching 

  Stiff reservoir: Reduced 
horizontal stress change 

The classical approach (uniaxial 
strain + no elastic contrast) is the 
most conservative 
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Compaction Drive 
• Pore compressibility from laboratory tests (Zimmerman, 

1991): 

 

 

 

 

• Pore compressibility for reservoir stress paths: 
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Compaction drive 
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Pore compressibility will lead to enhanced production. 
This is what we call compaction drive. 

•Relevant in soft rock reservoirs.  

•Irrelevant in gas reservoirs. 
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Compaction Drive:                            
Effect of Stress Path 
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Neglecting the multiplying 
factor in pore compressibility   

 

leads to overestimated 
compaction drive for soft 
reservoirs and underestimated 
compaction drive for stiff 
reservoirs  

Note: For elastically
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Reservoir Stress Path 

• Real reservoirs are not ellipsoidal – 
 

– Simulations need to be done with numerical models, incorporating 
geometry and heterogeneity. 

 
 
 
 
 
 

 
– The pore pressure distribution in a producing reservoir is 

heterogeneous (and so is the reservoir…)! 

FEM simulations by Mulders 
(2003) give the same result 
as Rudnicki’s solution near 
the centre of a disk shaped 
reservoir, but the stress path 
coefficients will vary with 
distance from the center of 
the reservoir. 
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