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Motivation

• Less successful time-lapse stories for 
stiff-rock reservoirs

• Detect small velocity change
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Critical offset monitoring

Stiff rock reservoir 

High velocity 

Critical angle

Critical offset 
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Basic principles of critical offset 
monitoring

• Critical offset is pure 
velocity dependent

• Requirements: 
– Increasing velocity with depth
– Acquiring long offset data
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Amplitude change at critical 
offset

Xcp: Critical offset  (Zoeppritz equation) 
= maximum amplitude offset
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Amplitude change at critical 
offset

XM: Maximum amplitude offset 
is frequency dependent

Maximum amplitude offset is easier to detect 6



Time-lapse properties of XM

ΔXcp = 152m (3.5%)

ΔXM = 175m (3.4%)

When f=cte :
∆XM / XM ≈ ∆Xcp / Xcp
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Synthetic modelling

Base

Monitor: 2% increae in Vp of 
Layer 2

Difference

Thickness 

(m)

Vp (m/s) Vs (m/s)  (kg/m3)

Layer 1 476 1904 1200 1750

Layer 2 725 2900 1500 1800

XM

Monitor
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Amplitude analysis of top 
reservoir

shift in XM is mainly controlled by P-wave velocity
XM is practically independent of S-wave velocity and density
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Thin layer effect

Top reservoir

Base reservoirM
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Synthetic result, Valhall 
representative

Underburden velocity change => +ΔXM 11



Valhall LoFS-data

• Chalk reservoir
• High porosity
• 10-60m reservoir 

thickness

Compacting in the reservoir and stretching in the 
overburden
Reservoir compacts ( ~8 m)
Seafloor subside (~5m)
full field permanently-installed 4D OBC, LoFS (Life of 
Field Seismic), in 2003

Barkved and Kristiansen 2005
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Why LoFS data?

• Velocity increase at 
top reservoir

• High repeatability
• Max offset = 

5000m (over 
critical offset)

• Overburden noise 
is not severe

Barkved et al. 2003
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Example of CMP amplitude 
analysis

LoFS-6 LoFS-8LoFS-1
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Example of CMP amplitude 
analysis

?
? ?

LoFS-6 LoFS-8LoFS-1

It is not easy to find the maxium amplitude offset in every CMP15



Monitoring of XM

-120±115m -250±60m

Only negative change in XM =>Negligible  change in Underburden? 16



Inversion for ∆xM

LoFS-1 LoFS-6 LoFS-8

Overburden 2200 m/s -14% -26%

Reservoir 2900 m/s +14% +26%

P-wave velocity (m/s):

Overburden thickness undergoing change= 200m
Reservoir thickness =20m
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Combining conventional 4D with 
4D refraction analysis => density 

estimation
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Conclusions
• Method:

– maximum amplitude offset instead of critical offset 
monitoring

– potential to monitor velocity changes in stiff-rock 
reservoirs

– pure velocity estimator
– sensitive to P-wave velocity of reservoir and overburden
– independent of density and S-wave velocity
– complementary to conventional 4D

• Maximum amplitude offset is 
– frequency dependent
– beyond critical offset =>  long offset acquisition

• In case of a thin layer, underburden velocity becomes 
important. 
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