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What is Synthetic Rock Mass (SRM) modeling? 

 - Combination of:

     1 – Discrete element method

          - Numerical tool for the analysis of geomaterials and particulate 
systems 

          - Bonded particle systems simulate the geomechanical behaviour of 
rock        
            (frictional/elastic/brittle)

   
     2 – Smooth joint model

          - Representation of rock mass discontinuities

          - Allows slip and opening on internal 
            planar surfaces 
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Discrete element model (DEM)

- Discontinuum mechanics code, simulates the behaviour/deformation of 
stressed granular assemblies by calculating the displacement of each 
particle in relation to the forces acting upon it 

- Disks (PFC2D) or spheres (PFC3D) – Cundall and Strack (1979)

- Explicit time-stepping method, calculation cycle repeated at each time 
step:

                                                                                                          Update particle motion 

              Newton’s 2nd Law (applied to each particle)                                                                           Contact Law 
(applied to each contact)

  Update contact forces

Deformability:      Fn = KnUn

                                Fs = 
-ksΔUs

Strength:               Fs ≤ μFn
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Discrete element model (DEM)

- ‘Bonds’ may be may be inserted at inter-particle contacts

                          3



Discrete element model (DEM)

- ‘Bonds’ may be may be inserted at inter-particle contacts

- Bonded assemblies may be subjected to simulated laboratory tests 

                          3



Discrete element model (DEM)

- ‘Bonds’ may be may be inserted at inter-particle contacts

- Bonded assemblies may be subjected to simulated laboratory tests 

- Micro-properties of particles/bonds calibrated so that macroscopic 
response of sample matches known/desired intact rock macro-properties 
in terms of strength, deformability (elasticity) and brittle behavior

1

E

                          3



Smooth joint contact model 

- Representation of rock mass discontinuities through simulation of a 
smooth interface

- Particle pairs joined by a smooth joint contact where the particles may 
overlap and slide past one another rather than being forced to move 
around one another
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Smooth joint contact model 

- Discrete fracture network (DFN)

- To understand/quantify fracture characteristics:

          - Orientation, aperture width, length, spatial distribution, 
connectivity, etc. 

- Developed through input from: 

     - Seismic

     - Borehole analysis (e.g., core, televiewer)

     - Outcrop analogues

     -Theoretical/statistical models

- 50 m

- 100 
fractures  

- Power law 
fracture 
length 
distribution 
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Creation of SRM

Intact rock 
representation
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cn

joint

Smooth Joint model

=

Jointed rock

DFN

+

=

SRM

‘Numerical rock 
mass’ block which 
honors both the 
properties of the 
intact rock and 
fracture 
characteristics and 
distribution 
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Objectives of study

1 – Direct

     - Explore the use (and limitations) of the SRM approach for modeling 
the 
     geomechanical behavior of fractured rock masses/reservoirs 

     - Comparison with analytical/continuum solutions

     - Limited scale (≤100 m blocks in 3D)

2 – Indirect 

     - Determination of the macroscopic properties of relatively small-scale 
(m) SRM samples   
     for use numerical simulations more suitable to reservoir-scale

     - MDEM (hybrid continuum/discontinuum) 

     - Developed under ROSE Project by H. Alassi
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Progression of study

Direct: 2D → 3D → Geologic model

     - Consideration of the behaviour stressed blocks (≤ 50 m)

          - Range of intact rock and joint properties

          - DFNs generated via statistical models

          - Static scenarios:
          
               - Variation of stress with depth 
               - Variation of stress ratios
 
          • What is the state of stress on the fractures? 
          • Is there fracture propagation or new fracture formation?
          • How does this vary with in situ stress state?
          • How do the results compare with analytical solutions? 
          • How do the results compare with continuum numerical 
solutions?
          • What is the seismic response of the stressed blocks and how 
does this vary? 

σ1

σ3
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Progression of study

Direct: 2D → 3D → Geologic model

     - Consideration of the behaviour stressed blocks (≤ 50 m)

          - Dynamic scenarios:
          
               - Stress increase due to depletion

     • How does fracture stress state vary? 
     • Is there fracture propagation or new fracture formation?
     • Dependency on in situ stress state?
     • How do the results compare with analytical solutions? 
     • Associated microseismicity? Microseismicity patterns?  
     • What are the implications for permeability anisotropy?

               - Fracture aperture tracking as a function of stress
               - Flow through a network of connected ‘pipes’ along fracture

                         - Injection scenarios, also possible in MDEM

σ1

σ3
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Progression of study

Direct: 2D → 3D → Geologic model

          - Addition of intermediate stress

σn

τ

σn

τ
<  μ

             - Critically stressed fracture analysis

               - Critically stressed fractures recognized as 
               crucial fluid pathways by Barton et al. (1995)  

σn

τ
≥  μ

τ
σn

σ1σ3 σ2 σn

τ μ = 0.6

Critically 
stressed 
fractures

Stable 
fractures
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Progression of study

Sherkati and Letouzey (2004)

Direct: 2D → 3D → Geologic model

          - Variation in fracture orientation, density, 
          connectivity within a geologic structure

          - Fractured carbonate anticline

          - Middle East (Zagros Fold and Thrust Belt)
         

          - Fracture patterns vary systematically around 
          the structure as a result of folding process  

Cosgrove and Ameen (2000)
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Progression of study

Direct: 2D → 3D → Geologic model

          - Geologic reconstruction in MOVE software

          - Kinematic reconstruction of geologic structures based on 
geologic principles

          - Allows for consideration strain evolution in structure through 
time

          - DFNs development based on this strain evolution
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Progression of study
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Progression of study

Direct: 2D → 3D → Geologic model

          - Spatially variable DFN, characteristics based on structural 
evolution (strain history)

          - Sections of DFN can be used to construct SRM models

          - SRM subjected to stress path observed in continuum simulations

          - Determination of the variation in fracture behaviour spatially

          

Cosgrove and Ameen (2000)
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Progression of study

Indirect: 

          - Use of SRM samples to determine rock mass properties 

          - Behavior/properties determined can be used as input for 
geomechanical 
          simulators more suitable to large (i.e. km) scale

          

ε

σ
 (

M
Pa

)
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Progression of study

Indirect:

          - MDEM (Modified Discrete Element Method)

               - Works with particle clusters rather than individual elements

               - Behaves as a continuum before failure and a discontinuum
               afterwards

               - Straightforward to build km-scale geomechanical models 
               using automatic triangular mesh generation
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Progression of study

Indirect:

          - Uniaxial test on a 2x2x4 m block of ‘carbonate’

          - Intact elastic properties: E = 50 GPa, v = 0.25 

          -  45° fracture(s), μ = 0.6 

          

σ
 (

M
Pa

)

ε

Max = 122 MPa

Max = 62.1 MPa

Max = 57.3 MPa

Max = 6.0 MPa

Intac
t

1 fracture

3 fractures Non through-going 
fracture
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Current progress

Direct study, 2D: 

          - Comparing fracture stress condition at depth with analytical 
solutions

          - Effective stress scenario at 2000 m depth (ρ = 2000 g/cm3)

          - 10x10 m block, 1834 particles, mean 0.25 m diameter  

          - Intact rock mass  properties:
                • UCS = 100 MPa
                • E = 50 GPa
                • v = 0.25

          - 4 m, 45° fracture
                • μ = 0.6

          

σ3 = 9.8 MPa 

σ3 = 19.6 MPa 
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Current progress

Direct study, 2D: 

          - Comparing fracture stress condition at depth with analytical 
solutions

          - Effective stress scenario at 2000 m depth (ρ = 2000 g/cm3)

          - 10x10 m block, 1834 particles, mean 0.25 m diameter  

          - Intact rock mass  properties:
                • UCS = 100 MPa
                • E = 50 GPa
                • v = 0.25

          - 4 m, 45° fracture
                • μ = 0.6

          

σn = 14.7 MPa, τ = 4.9 
Mpa 
(analytical solution)

σn

τ

σn = 14.1 MPa, τ = 5.0 
Mpa 
(numerical solution)

σ3 = 9.8 MPa σ1 = 19.6 MPa
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Current progress

Direct study, 2D: 

          

σn

τ

σ3 = 9.8 MPa σ1 = 19.6 MPa

θ = 45° θ = 60°θ = 30°θ = 0° θ = 90°

           Difference 
(mean)
 
σn                 - 1.1x

τ                   + 1.6x 
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Next steps

Direct study, 2D:

          - Introduction of DFN

          - Variation of stress state:

               - Fracture propagation?  

               - New fracture development?  

               - Etc.?  

          
τ

σnσ1σ3

μ
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Thank you
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