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What & Why

1 Geomechanical influence on 4D seismic response
simulated in an ultrasonic set-up within a triaxial cell

 Expected stress paths are simulated for two scenarioes:

<* Depletion of a reservoir with subsequent injection of (water or) CO,
“* Direct injection (of e.g. CO,) into a storage site

4 Artificial rock-like materials are used to simulate storage
reservoir and cap rock



Laboratory set-up

Triaxial cell
U Multi-directional ultrasonic (0.2 — 0.5 MHz) P- & S-wave measurements

I Axial & radial stress & strain control & measurements
¢ 2 LVDTs for axial strain + Chain for radial strain

I Pore pressure & Temperature




Synthetic sandstone — "UTSTEIN”

 Synthetic sandstone is made from sand (mean grain size
180 um), mixed with an aqueous sodium silicate solution

 After pre-compaction to < 3 MPa, the plug is cemented under
stress by flushing with CO,

“* Bonding material is amorphous silica

J UTSTEIN is formed at 7 MPa axial (< vertical) and 3.5 MPa
radial (& horizontal) stress, corresponding to effective stress at
~7 — 800 m depth

J Subsequent tests are performed with dry samples: Stress
changes mimick influence of pore pressure changes



Synthetic sandstone — "UTSTEIN”

UTSTEIN properties:
> Porosity: ~ 37 % (ambient); ~ 35 - 36 % ("in situ”)
> Velocities @ "in situ” stress (7 & 3.5 MPa):

vPz VPr vSz vSr

UTSTEIN_O1 1455 1190 830 740
Uncemented

UTSTEIN_01 1575 1290 905 790
Cemented

UTSTEIN_02 1490 1240 840 790
Uncemented

UTSTEIN_02 1620 1370 915 885
Cemented




UTSTEIN:
Synthetic Sandstone tests
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UTSTEIN:
Stress vs. Strain response
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Compaction modulus:

~ 2 -25MPa @ ”in situ” stress

d Softening both during loading and unloading,
In particular below forming stress
< Indicates gradual plastification of material Stress ratio K,;:

' No evidence of macroscopic failure

~ 0.35 — 0.40 during unloading

~ 0.50 during loading



UTSTEIN:
Axial P-wave: Stress & Strain sensitivity
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O Strong stress & strain dependence, in particular during unloading (simulated injection)
< Initial stress sensitivity ~ 58 m/s MPa-; average rate ~ 77 m/s MPa-

‘0

» R-value shows same trend
0 So, geomechanical 4D effect should be significant for soft (unconsolidated) reservoir rock
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TAKSTEIN
Simulated Cap Rock:
Compacted Kaolinite with NaCl Brine

N Manufacturing procedure: Velocities @ ISS
D Precompaction to 3 MPa axial stress in (6,223, 6,= 20, p=10 MPa):
Stress (ISS) ]
celected as anoedometer, followed by step-wise Test T_01 T_02
loading to ISS in triaxial set-up. v. 21302184
23 MPa b
(vertical) Vp, 2269 2336
20 MPa | v, 787 781
(horizontal)
10 MPa (pore Vs 912 916
pressure) €y, 0.067 0.072
- 3 Yo 0.171 0.188
3 Porosity: 30 — 35 % @ ISS
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Overburden Stress Path

Volumetric strain

The stress path in the overburden is close to :
Constant Volume & Pure shear loading 00100
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Based on Geertsma model (linear elastic, no contrast reservoir vs. overburden)

In addition: Undrained pore pressure response in overburden



Cap Rock response?

 The stress path in the overburden above a depleting /
Inflating reservoir is (in a simple case...) close to Constant
Mean Stress

 The pore pressure response is Undrained

 Two tests have been designed to simulate this, following
the 2 scenarioes above:
< Simulated cap response to direct inflation of reservoir
< Simulated cap response to depletion — inflation of reservoir
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Synthetic Cap (TAKSTEIN) tests
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Stresses & Pore Pressure [MPa]
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TAKSTEIN_O01:
Simulated cap
response to direct
inflation of
reservoir

Constant
Mean Stress

TAKSTEIN_02:
Simulated cap response
to depletion — inflation
of reservoir
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TAKSTEIN:
Stress vs. Strain & Pore pressure
evolution
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For axial stress increase (with radial stress decrease)
(<=> 1njection above pore pressure):

Approaching failure!

@ NTNU 16 SINTEF




TYNMVL VUIVUILY Wiy [1ing]

LUV 1

Q

@ NTNU

TAKSTEIN:

Axial P-Wave velocity In Undralned
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Axial P-wave velocity shows:
% Slow-down during unloading (simulated
response to depletion)
** Eventually also slow-down associated with
loading (simulated response to injection)
% Hysteresis reflects pore pressure evolution
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TAKSTEIN:
Stress Induced Anisotropy

 Clear (close to linear)

. | enauncaangows  relationship between
- Coe e w02, omarecamcvs  change in velocity
£ A A @~xial Loading CMS :
N anisotropy and change
4 Lo . .
> 0.15 LR In stress anisotropy
>
; * ¢ - Q Similar trends with
; ‘ ‘O (O ‘O ‘ ‘ . .
: . o 04 axial unloading &
: loading?!

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

3 Anisotropy is not
iInfluenced by pore
pressure change
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TAKSTEIN:
v, | v, ratio
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d vi/vs ratio increases when axial stress is increased & radial stress
decreased ( < injection in reservoir beneath)
<* Probably not significant for field relevance?
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Conclusions

Q Tests with synthetic sandstone & compacted claystone formed under stress
give physical insight into geomechanics & rock physics of reservoir and
overburden rocks.

d Effects of stress changes simulating depletion of or injection into a soft
sandstone reservoir have been simulated, for both reservoir (uniaxial
compaction) and overburden (undrained constant mean stress).

* Reservoir sandstone shows evidence of plastification as a possible response to simulated
injection (in particular above initial pore pressure) as well as depletion.

% Significant stress sensitivity of wave velocities gives rise to 4D effect, in particular as a
result of simulated injection.

 Overburden claystone shows evidence of failure intiation as a response to injection into a
reservoir beneath.

** Significant slow-down above centre of a depleting resevoir, insignificant speed-up above
an injection site.

O Other 4D attributes: Stress-induced anisotropy, Ve/vs?

@ NTNU 20 SINTEF
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Fluid vs. Stress Effects?

* The elastic properties of supercritical CO, are significantly different
from brine properties, thus a 4D response is expected

* We have estimated effects of fluid substitution using a b.o.s.s.
approach:
— Simplified to isotropic rock
— Using constant values for bulk modulus & density of fluids (K¢ ,=0.1 GPa;
Pco »=0.6 g/cms)

* Patchy saturation is simulated using Brie’s empirical relation with e=3

K, ;=(K,~K)1-S,) +K,

@ NTNU 22 SINTEF




Fluid vs. Stress Effects?
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* Fluid and Stress effects may be comparable in magnitude for a soft storage reservoir
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