TRUE AMPLITUDE MIGRATION: Shot profile migration

B. Arntsen, E. Tantserev, NTNU and L.Amundsen, Statoil.

OVERVIEW

- Introduction
- True-amplitude shot-profile migration
- Numerical examples
- Conclusions

INTRODUCTION

 $R(\theta)$: Uknown reflection coefficient

 $\boldsymbol{\theta}$: Angle

 $c_0(x, y, z)$: Smooth known background velocity

INTRODUCTION

- Well developed methodology for ray methods
 - Angle migration (Ursin, 2004)
- Wave methods
 - Classical shot-profile migration (Claerbout, 1971)
 - Angle transform (De Bruin et al, 1990)
 - Cross-correlation (Zhang and Bleistein, 2007)

OVERVIEW

- Introduction
- True-amplitude shot-profile migration
- Numerical examples
- Conclusions

PLANE LAYER MODEL

$$U(k_x, z, \omega) = R(k_x, z)D(k_x, z, \omega)$$

frequency

Horizontal wavenumber

Inversion for R:

$$R(k_x, z) = U(k_x, z, \omega) / D(k_x, z, \omega)$$
 UNSTABLE!!!!

PLANE LAYER MODEL

Source pulse $D(k_x, z, \omega) = \exp(-ik_z)$ Extrapolator $k_z = \sqrt{(\omega/c_0)^2 + k_x}$

$$R(k_x,z) = U(k_x,z,\omega)/D(k_x,z,\omega) = U(k_x,z,\omega)D^{'*}(k_x,z,\omega)$$

STABLE!!!!

$$D'^{*}(k_{x}, z, \omega) = \exp(ik_{x}z)$$
Extrapolator
$$\left(\frac{2ik_{z}}{S}\right)$$

Modified source wave-field

GENERAL MODEL

$$R(x_r, x_s, z) = \int d\omega \, U(x_r, z, \omega) D^{*}(x_s, z, \omega)$$
Reflection matrix

Modified source

ANGLE GATHERS

Single shot gives limited angle information

ANGLE GATHERS

Need many shots to get full angle coverage at single position

ANGLE GATHERS

Reflection matrix as function of offset and midpoint:

$$R(x_m, h, z) = \int d\omega U(x_m - h, z, \omega) D^{*}(x_m + h, z, \omega)$$

Reflection matrix as function of slowness (angle) and midpoint:

$$R(x_m, p_h, z) = \int d\omega \int dh \exp(i\omega p_h h) U(x_m - h, z, \omega) D^{'*}(x_m + h, z, \omega)$$
Horizontal slowness

IMAGING CONDITIONS

Claerbout's (1971) classical imaging condition:

$$R_c(x_m, h = 0, z) = \int d\omega U(x_m, z, \omega) D^*(x_m, z, \omega)$$
Point-source

Extended to include offset (Rickett and Sava, 2002):

$$R_{RS}(x_m, h, z) = \int d\boldsymbol{\omega} U(x_m + h, z, \boldsymbol{\omega}) P^*(x_m - h, z, \boldsymbol{\omega})$$
Point-source

New imaging condition:

$$R(x_m, h, z) = \int d\omega U(x_m + h, z, \omega) P^{*}(x_m - h, z, \omega)$$
Modified source

OVERVIEW

- Introduction
- True-amplitude shot-profile migration
- Numerical examples
- Conclusions

Density contrast

Model

Shot gather

Density contrast only = angle independent reflection coefficients

Density contrast

New imaging condition

Amplitude picks

Density contrast only = angle **independent reflection coefficients**

Density contrast

Rickett and Sava (2002)

Amplitude picks

Density contrast only = angle independent reflection coefficients

Velocity contrast

Shot gather

Velocity contrast

New imaging condition

Amplitude picks

Theoretical

 $\propto 1/\cos^2(\theta)$

CONCLUSIONS

- Conventional shot-profile image conditions lead to incorrect angle dependence of the reflection coefficient
- New imaging condition with modified source gives correct angle dependence of reflection coefficient for plane layers

ACKNOWLEDGEMENTS

- STATOIL for financial support
- Sponsors of ROSE and the Norwegian Research Council for financial support

GENERAL MODEL

$$U(k_r, z, \omega) = \int dk_s R(k_r, k_s, z, \omega) D^*(k_s, z, \omega)$$

$$R(k_r, k_s, z) = \int d\omega U(k_r, z, \omega) D^{'*}(k_s, z, \omega)$$