
Introduction

This paper deals with the problem of estimating anisotropic parameters for depth migration over a
transversely isotropic medium (TI). We present a wave equation migration velocity analysis (WEMVA)
method based upon the differential semblance misfit function and elastic reverse time migration (ERTM).
The method is an extension of the method for isotropic velocity analysis presented in Weibull and
Arntsen (2011). The anisotropic parameters are estimated simultaneously through a iterative non-linear
process aiming at minimizing the errors in the kinematics of the depth migrated images.In general,
the velocity parameters can not be obtained uniquely from surface seismic data alone due to the lack
of sensitivity and/or ambiguity and tradeoff between the different parameters (Grechka et al., 2002).
Nevertheless, our method can be used to generate an accurate image of thesubsurface that can be used
as frame to draw better constrained and more unique solutions to the parameterestimation problem.

In the next section, we present the basic equations needed to set up andsolve the optimization problem
and then show two numerical examples which confirm the viability of the method in synthetic data.

Method and Theory

The theory for elastic reverse time migration is founded on non-linear inversion theory (Tarantola, 2005).
Depth images are produced by crosscorrelating a source wavefield forward propagated in time with a
residual wavefield backward extrapolated in time. In the context of elastic full waveform inversion,
these images represent the gradients of the least square misfit function withrespect to the material
parameters. On the other hand, if the residual wavefield is given by the single scattering recorded
data, we obtain Claerbout’s imaging condition (Claerbout, 1971). According to this condition, given an
accurate estimate of the material velocities, the crosscorrelation of the reconstructed source and receiver
wavefields will have a maximum at zero lag in time and space. In Differential Semblance optimization
we explore this fact to set up a non-linear least squares inversion problem. By parametrizing the image
with an additional lag parameter we can capture the deviation of the maximum in crosscorrelation from
zero lag, and use this to quantify the error in the estimates of the velocities.

In this paper we use an ERTM image parametrized by horizontal spatial lag (h):
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with Einstein summation convention overi and j. The wavefieldsuf w
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source and receiver wavefields, respectively. These wavefields are computed by solving the constant
density elastic wave equation:
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WhereGi j is the constant density elastic Green’s function,S is the pressure source function,Prec is the
recorded pressure data,x = (x1,x3) are the spatial coordinates,h = (h1,0) is the subsurface horizontal
half-offset,t is the time ands is the source index.

The Differential Semblace misfit function quantifies the deviation from zero lag, and is given by (Weibull
and Arntsen, 2011):
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The errors quantified by the Differential Semblance misfit function can be turned into velocity updates
by a non-linear iterative optimization process. In this process, it is necessary to compute the gradients
of the misfit function with respect to the velocity parameters.

The gradients can be computed in a similar fashion to the depth migration described above, by the adjoint
state method (Chavent, 2009):
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Whereci jkl is the elaticity tensor, andm depends on the velocity parametrization. In a 2D tranversely
isotropic medium (TI),m consists of the P-wave velocity along the symmetry axis (V0), the Thomsen’s
parameters (ε andδ ; Thomsen (1986)), and the tilt angle of the symmetry axis (θ ).

The wavefieldsψ f w
i andψbw

i are adjoint states that can be computed by the following adjoint modelings:
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Numerical examples

The first example in this section shows the behaviour of the Differential Semblance Misfit function for a
simple TTI model. The model consists of a 1D layered model consisting of 3 layers with different values
of the parametersV0, ε, δ andθ , as shown in figures 1A-C. We simulate surface seismic data over this
model with a maximum offset of 1400 m. To generate the data we use a finite difference solution to the
elastic wave equation (Lisitsa and Vishnevskiy, 2010). Perturbing the magnitude of parameters in the
second layer and computing the Differential Semblance error, one at a time,allows us to plot a 1D curve
showing the variation of the Differential Semblance misfit function for each parameter, as shown in
figures 1D-E. These plots show many interesting aspects of the Differential Semblance misfit function.
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Figure 1 A-C: 1D models used in example 1; D-F: Errors computed by perturbingthe true models. Note
that only one parameter is perturbed at a time, the other parameters are fixed at their true value.
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The major strength of this misfit function is that it is convex for a wide range ofmodel perturbations, and
therefore is particularly suitable for gradient based optimization. On the other hand a major weakness
of the misfit function, is that the optimum velocity is not the true one. This means that to converge to
a very accurate solution, additional constraints must be placed or other more refined misfit functions
must be used, such as in full waveform inversion. The last comment is regarding the sensitivity of the
Differential semblance with respect to the different parameters, which is avery dependent on the model
and acquisition geometry. In this case, we see that the objective function is most sensitive toV0, andε.

In the second example we show the results of a Differential Semblance Optimization over a VTI syn-
thetic model of the Gullfaks field off the Norwegian Margin. We attempt to simultaneously obtain
estimates forV0, ε andδ . The initial model is an isotropic model whereV0 is a 1D model linearly in-
creasing in depth from 1480 m/s to 3200 m/s. The data simulates a streamer data withminimum offset
of 150m and maximum offset of 6km. The maximum frequency in the data is 30Hz.

The results of the optimization pictured in Figure 2, show reasonable estimates of V0, ε and δ . As
can be seen from Figures 2B, 2C and 2D, the resolved parameters are strongly smoothed. This was
a necessary constrain that helped reduce the null space and stabilize theoptimization. At the same
time, anisotropic parameters were constrained to have positive values only.The Common Image Point
Gathers atx= 2 km, for the ERTM images constructed with the initial isotropic model, the optimized
anisotropic model and the true set of parameters were ploted in Figure 3A. These angle gathers, show
that the updated model succeeds in improving the kinematics of the migrated image,in particular for the
deeper events. For completeness, Figure 3B shows a comparison of logsof the different parameters for
the same position (x= 2 km).
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Figure 2 A: True V0 model; B: Updated Vo model; C: Trueε model; D: Updatedε model; E: Trueδ
model; F: Updatedδ model.
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Figure 3 A: Angle gathers - Initial (left), Updated(centre), True(Right); B: Comparison of velocity logs
for V0 (left), ε (centre),δ (Right).

Conclusions

Anisotropic velocity models can be automatically estimated from surface seismic data by a non-linear
optimization process based upon differential semblance and elastic reverse time migration. Through
this process, the errors in the kinematics of migrated images are turned into parameter updates that help
improve the positioning of the reflectors in the depth migrated image. This can be explored to create
better constrained models and mitigate the inherent non-uniqueness of the solution of this type of inverse
problem.
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