
Introduction

Elastic full-waveform inversion (EFWI) is a powerful technique that can be used to infer elastic param-
eters (such as P- and S-wave velocities) of the medium from seismic data observed at a set of receivers
(Mora, 1987; Virieux and Operto, 2009). EFWI is in practice a local optimization problem. Starting
from an initial estimate, the medium parameters can be updated iteratively by incrementing them with
the derivatives of the misfit functional (which measures the error between the observed and simulated
data) with respect to each of the medium parameters. The efficient implementation of the derivative
computations require enormous amount of computer memory storage. The large requirements in terms
of storage is one the main barriers for the application of this method to large scale 3D problems.

In this paper, we propose and test a strategy based on reverse-time wavefield reconstruction using the
Kirchhoff integral that effectively reduces the storage requirements, at the cost of a mere factor of two
increase in the computational runtime. Different from methods based on checkpointing (Griewank and
Walther, 2000), the method does not produce an exact reproduction of the derivatives. But the artifacts
introduced are uncorrelated from source to source, such that, in problems with large number of sources
(i.e. 3D problems) the noise will tend to average out. To verify the effect of the imperfect derivatives on
the convergence of EFWI, we test the strategy in a moderate size 3D synthetic dataset.

Method and Theory

Elastic full-waveform inversion

Elastic full-waveform inversion is a classical non-linear inverse problem (Mora, 1987). Elastic waves
generated by a source propagate in a heterogeneous elastic medium and the displacements are measured
at a finite number of receivers. By minimizing the misfit between the observed and the simulated seismic
data at the receivers the values of the elastic parameters of the medium can be estimated. There are
different measures of the misfit between observed and simulated data, the most common being the least
squares difference. In its most simple form, the least-squares norm can be written as
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where, ui is the simulated data, and uo
i is the observed data, xr are receiver coordinates, t is time, and s

is a source index.

The evaluation of the misfit functional (equation 1) is computationally expensive. In addition, the solu-
tion space can be very large (generally in the order of millions of unknowns). For these reasons, global
optimization solutions to the minimization problem do not work well, and therefore one has to rely on
gradient descent based methods. The gradient descent methods require the evaluation of the misfit func-
tional and its gradient with respect to the model parameters at each iteration. To compute the gradient
of equation 1 with respect to the parameters, it is customary to employ the adjoint state method (Lions
and Magenes, 1972; Chavent and Lemonnier, 1974; Plessix, 2006). This method gives the following
equations for the gradients with respect to the model parameters m
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where ci jkl is the elasticity tensor, x are Cartesian coordinates, ui are the forward modeled displace-
ment wavefields, ũi are reverse-time modeled residual displacement wavefields. The equations used to
compute these wavefields can be found in Mora (1987).

Equation 2 shows that ∂S/∂m can be computed from the temporal accumulation of a weighted crosscor-
relation of the forward modeled source wavefields and the reverse-time modeled adjoint wavefields. In
order to perform the crosscorrelation, both forward and reverse-time modeled wavefields must be made
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accessible at the same time instances. This problem has classically been solved by first modeling and
storing all the time instances of the forward wavefields in memory (checkpointing) and then, during the
reverse-time modeling, accessing them as necessary. In the case of 3D EFWI, this strategy requires the
availability of several hundreds of terabytes of memory for any realistically sized problem. To over-
come this challenge, other strategies have been suggested, all of them involving some combination of
disk storage and recomputation of the forward wavefields. In the following, we describe a few of these
strategies and the their requirements.

Consider an elastic medium Ω⊂ R3 surrounded by the boundary ∂Ω. For any (x, t) ∈ Ω×T , where T
is some time interval, we let ui(x, t) be the particle displacement in direction i, fi(x, t) is the body force
in direction i, and ci jkl is the elasticity tensor. An elastic wave propagating in Ω can be explained by the
elastodynamic wave equation for the displacement field,

ρ(x)
∂ 2ui

∂ t2 (x, t)− ∂

∂x j

[
ci jkl(x)

∂ul

∂xk
(x, t)

]
= fi(xs, t,s). (3)

The above equation (equation 3) is solved numerically by rewriting it into a velocity-stress hyperbolic
system of first-order partial differential equations, and solve the system using a staggered-grid finite
difference method with high order spatial differential operators (Virieux, 1986; Holberg, 1987). In 3D,
this system consists of a total of 9 equations with 9 field variables (6 stresses and 3 particle velocities).
In addition to the system of 9 equations, perfectly matched layers (PML) are used to attenuate reflections
from the boundaries of the modeling aperture. The PML equations are solved only at the boundaries and
require some additional auxiliary variables.

Optimal checkpointing method

The only strategy that produce an exact reconstruction of the forward wavefields is the optimal check-
pointing method (Griewank and Walther, 2000). It consists in a first instance of computing the forward
modeling of the source wavefields and storing a small number of snapshots of these wavefields. Then
during the reverse-time modeling of the adjoint wavefields, the forward wavefields necessary for the
crosscorrelation are recomputed forward in time starting from the nearest stored time instance. The
method requires the storage of snapshots of all fields variables and absorbing boundary auxiliary vari-
ables in order to accurately reconstruct the forward wavefields. There is a tradeoff between the number
of stored snapshots and the amount of recomputation necessary. The optimal number of snapshots to
store is then chosen such as to balance storage and recomputation. A detailed description of the method
can be found in Griewank and Walther (2000).

Dirichlet boundary condition method

The cheapest strategies both in terms of storage and recomputation involve the storage of the forward
wavefields at the boundaries of the computational grid together with the full snapshots of the last time.
Given the lossless (self-adjoint) nature of the elastic wave equation, the wavefields can then be recon-
structed in reverse-time from the boundaries. The reconstruction can be performed in two ways. One
way uses Dirichlet boundary conditions to reconstruct the wavefields in reverse-time. The other uses
the Kirchhoff integral (Mittet, 1994). Here we describe the Dirichlet boundary condition method. The
second method is described next. The Dirichlet boundary method requires the storage of all time in-
stances of forward wavefields of the 9 field variables at ∂Ω. The auxiliary PML variables do not need to
be stored. The forward wavefields are then reconstructed inside Ω in reverse-time from the boundaries
by setting the stored variables as boundary conditions. Since both the forward and adjoint wavefields
are now modeled in reverse-time, both wavefields needed for crosscorrelation are available at all time
instances. The recomputation ratio of this method is two, due to the fact that the forward wavefields
need to be computed twice, once forward in time and once in reverse-time. Figure 1c) and 1d) show an
example of the reconstruction of the forward wavefields of the vertical particle velocity (u̇z) using this
strategy. The black stippled lines show the boundaries where the fields are stored. Inside the bound-
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Figure 1 Vertical profiles of snapshots of vertical particle velocity at two different times (0.2 and 0.3
s). Figures a) and b) are exact reproductions; c) and d) are reconstructed with Dirichlet boundary
method; e) and f) are reconstructed with the Kirchhoff integral method. The black stippled lines mark the
boundaries where the fields are stored, and inside which the wavefields are reverse-time reconstructed.

aries, the wavefields are reconstructed accurately, although with small artifacts in phase and amplitude.
Outside the boundaries, there are spurious outgoing waves. These outgoing waves need to be attenuated
with PML absorbing boundary strips.

Kirchhoff integral method

According to the Kirchhoff integral, 6 fields (3 particle velocities and 3 normal tractions) need to be
known at the boundaries in order to accurately determine the direction, as well as the mode of wave
propagation (P or S). Knowing these 6 variables at the boundaries, the wavefields inside Ω can be prop-
erly reconstructed in reverse-time from the boundaries in the direction they came from and in the mode
they propagated (Mittet, 1994). However, since we are measuring and storing the wavefields at the outer
boundaries, we know that the direction of the propagation is outwards. This means that we only need
to store 3 wavefields (the three particle velocities, in this case) at the boundaries in order to reconstruct
the wavefields inside Ω. The consequence is that the wavefields will be reconstructed in a mirrored
fashion to both sides of the boundaries. Similarly to the Dirichlet boundary method, the artificial ghost
wavefields can be attenuated with a PML absorbing boundary condition during the reverse-time recon-
struction of the wavefields. In practice, as can be seen in Figure 1e) and 1f), the incomplete Kirchhoff
reconstruction generate stronger artifacts than the Dirichlet boundary method. However, despite the
spurious artifacts, the forward wavefields inside the boundaries are properly reconstructed in both am-
plitude and phase. This is the most cost-effective strategy since it requires only 3 fields to be stored at
the boundaries, and reconstruct the forward wavefields at the cost of only one additional reverse-time
modeling. The artifacts inside Ω, in form of spurious waves coming from the injection boundaries, are
incoherent from source to source and will tend to stack out in the sum over sources. This is particularly
true for problems with a large number of sources (i.e. large 3D problems).

Results

Figure 2a and 2b show vertical profiles through the P- and S-wave velocities (Vp and Vs) of a 3D synthetic
elastic model. The model is adapted from the SEG/EAGE 3D Overthrust model. To test if the artifacts of
the Kirchhoff method can have an effect in the convergence of EFWI, we compare the results of inversion
for the P-wave velocities (Vp), and the S-wave velocities (Vs) using both the Dirichlet boundary condition
method and the Kirchhoff integral method. Ideally, the comparison should be done between the exact
reconstruction and the Kirchhoff integral method. However, even for this moderate size synthetic model,
the optimal checkpointing method require either more storage than we have available, or unreasonable
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runtimes. For this reason, we are forced to compare two approximate methods. Figures 2c and 2d show
the initial Vp and Vs models used to start the inversion. Figures 2e and 2f show results of inversion
using the Dirichlet boundary method to compute the gradient of equation 1. Figures 2g and 2h show
results of inversion using the Kichhoff integral method to compute the gradient of equation 1. Both the
Dirichlet boundary method and Kirchhoff integral method show very similar inversion results, despite
having different levels of artifacts in their wavefield reconstructions. This shows that the effect of the
artifacts on the inversion results are negligible.
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Figure 2 Vertical profiles of a) true Vp; b) true Vs; c) initial Vp; d) initial Vs; e) inverted Vp using Dirch-
let boundary method; f) inverted Vs using Dirichlet boundary method; g) inverted Vp using Kirchhoff
integral method; h) inverted Vs using Kirchhoff integral method.

Conclusions

Although none of the wavefield reconstruction strategies tested here are exact, they allow the inversion
of larger scale models than would otherwise possible using the exact checkpointed wavefields. Further
work is necessary to test the effect of the imperfect reconstruction against exact checkpointing over large
scale 3D models.
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