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ABSTRACT

Conventional methods for quantifying time-lapse seismic
effects rely on a linear assumption that is easily violated.
Therefore, more sophisticated methods are necessary. The
full-waveform inversion (FWI) method is an inverse method
that is able to reveal time-lapse changes in the image do-
main, in which the conventional methods break down. We
investigated the behavior of FWI using different approaches
for applying FWI on limited-offset time-lapse data. We com-
pared acoustic and elastic inversion schemes. We introduced
a method for constraining the model update for the monitor
model to remove time-lapse artifacts. This method was
based on migration of the residuals in the time-lapse data,
which, in combination with a local contrast estimation algo-
rithm, formed the update constraint. We found that for lim-
ited-offset data, elastic theory was necessary for the success
of FWI and that FWI was able to quantify the time-lapse
changes in the parameter models. The local migration regu-
larization approach was able to remove time-lapse artifacts.

INTRODUCTION

Conventional methods for quantifying time-lapse seismic effects
in seismic data involve prestack time-migrated data cubes in the
migrated image domain (Greaves and Fulp, 1987; Landrø et al.,
1999; Lumley et al., 2003). The methods assume that the monitor
model can be approximated by a linear perturbation of the baseline
model. In cases where production or injection induce strong
changes in the rock properties (bulk modulus, densities, and others),
the linearity assumption is violated. The migrated data cubes yield
images in the time domain, which in cases with complex geology
may be inaccurate when converted to depth. Thus, more robust

time-lapse analysis techniques are required to give reliable time-
lapse images in these cases.
The full-waveform inversion (FWI) method is a data domain

technique for estimating parameters affecting wave propagation us-
ing inverse theory (Tarantola, 1984; Mora, 1987; Virieux and Op-
erto, 2009). The inverse problem is nonlinear and ill-posed, which
make the problem challenging to solve.
Different approaches exist for applying FWI on time-lapse seis-

mic data (Zheng et al., 2011; Routh et al., 2012). Compared to the
conventional time-lapse methods that are basically qualitative meth-
ods, the FWI method is able to recover time-lapse effects in elastic
parameters directly. Moreover, the method is able to reveal time-
lapse changes, in which the linearity assumption for conventional
methods is violated.
In a time-lapse setting, where at least two parameter models must

be inverted for, the inversions may introduce noise in the time-lapse
images that are a direct consequence of the ill-posedness of FWI.
We call the noise introduced by the method for time-lapse artifacts.
In cases where the true time-lapse effects are small, the time-lapse
artifacts may distort the true time-lapse effects, leading to wrong
interpretation of the time-lapse images. Therefore, it is important
to find inversion approaches that tend to reduce the time-lapse
artifacts.
Queißer and Singh (2010) use the difference between the inverted

baseline and monitor P-wave velocity models to quantify gas sat-
uration changes. Zheng et al. (2011) use ocean bottom cable data to
reveal P- and S-wave velocity time-lapse anomalies. In their study,
they investigate three different ways of performing time-lapse FWI.
The first approach is formed by performing two independent inver-
sions for the baseline and monitor model using the same initial
model. In the second approach, they use the inverted baseline model
as the starting model for the monitor inversion. The third approach
is similar to the second, but in addition, they define the true monitor
data set to be the sum of the inverted baseline data set and the
difference between the true baseline and monitor data sets. In Routh
et al. (2012), synthetic marine time-lapse streamer data are used to
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quantify P-wave velocity anomalies in the subsurface. Raknes et al.
(2013) use FWI and the same three approaches as Zheng et al.
(2011) on synthetic and real time-lapse data sets to quantify time-
lapse effects in the subsurface. FWI is also used for monitoring CO2

injection considering time-lapse effects in the P-wave velocities us-
ing limited-offset data (Zhang et al., 2013).
Limited-offset seismic data contain mainly reflected waves,

whereas long-offset seismic data in addition includes other wave
phenomena like wide-angle refracted waves, guided waves, mode
conversions, and surface waves. For seismic data that are dominated
by reflected waves, the acoustic approximation is approximately
correct for the kinematics, but not for the amplitudes. The elastic
approximation, on the other hand, is correct for the kinematics
and the amplitudes. Therefore, if FWI should be applied with suc-
cess using limited-offset data dominated by reflected waves, an
elastic approximation of the wave propagation must be used in the
inversion.
In this study, we apply FWI on limited-offset synthetic and real

time-lapse data using different time-lapse approaches. In addition,
we investigate the difference between acoustic and elastic inversion,
in which we use empirical relations to link the inverted P-wave
velocities to the density and S-wave velocities. We present a way
of creating a gradient constraint that only allows updates in specific
areas in the models. The method is based on a migration method in
combination with a local contrast detection algorithm. With this ap-
proach, it is possible to find areas in the models that are different in
the time-lapse data and use this information to constrain the updates
in the inversion algorithm, and hence, reduce the amount of time-
lapse artifacts. We introduce time-lapse FWI briefly, and describe
the local migration regularization (LMR) approach. We investigate
the behavior of FWI and the proposed method for creating time-
lapse images on a synthetic model using limited-offset data. Then,
we apply the approach on a real time-lapse data set. Our investiga-
tions show that FWI is able to reveal time-lapse changes. The
acoustic-based FWI fails and thus proves that an elastic based
FWI is necessary for obtaining reliable results using limited-offset
seismic data.

THEORY

FWI

The FWI method is an algorithm that iteratively searches for a
model that describes given data, by gradually minimizing a given
objective function in the data domain. In seismic inverse problems,
the objective function is a measure of the dissimilarity between
measured data, and data modeled using the current inverted model.
The inverse problem is ill-posed resulting in several models giving
modeled data that fit the observed data to within the expected noise
level. To overcome this problem, a standard procedure is to add
penalty terms to the objective function, the purpose of which is
to drive the optimization algorithm in a direction that gives a solu-
tion closer to the preferred solution (Scales et al., 1990; Virieux and
Operto, 2009).
We define the objective function as

Ψ ðmÞ ¼ Ψ dðmÞ þ λΨmðmÞ; (1)

where m is the model vector, ΨdðmÞ is the data functional on the
data space, and ΨmðmÞ is the model functional on the model space.

The constant λ is a factor that controls the contributions between the
data and model norms. The data norm measures the dissimilarity
between the measured and modeled data. The model norm, on
the other hand, is interpreted as a regularization term, prior infor-
mation term, or a combination of the two. Common regularization
terms are Tikhonov regularization, which penalizes the roughness
of the model, and smoothing regularization, whose purpose is to
keep the model smooth. More sophisticated regularization terms
may be formed by minimizing the total variation of the model
(Virieux and Operto, 2009).
We use a normalized version of the standard least-squares norm as

the objective function on the data space. The functional is given as

Ψ dðmÞ ¼
1

2

Xns
j¼0

Xnr
i¼0
kûi;jðmÞ − d̂i;jk22; (2)

where ûi;jðmÞ ¼ ui;jðmÞ∕kui;jðmÞk2 is the normalized modeled

data, d̂i;j ¼ di;j∕kdi;jk2 is the normalized measured data, nr is the
number of receivers in the data set, and ns is the number of shots
in the data set. In what follows, we let di;j ¼ di;jðtÞ be the pressure
data trace vector. The model functional is defined as

ΨmðmÞ ¼
1

2
kWðm −m0Þk22; (3)

where W is some weighting matrix on the model space, whose pur-
pose is to emphasize particular parts of the model vector, and m0 is
the initial model vector.
Searching for the minimum of Ψ ðmÞ is done using an iterative

minimization algorithm, which in general terms is written as

mkþ1 ¼ mk − αkH−1
k gk; (4)

where αk > 0 is the step length, H−1
k is the inverse Hessian matrix,

and gk is the gradient of Ψ ðmÞ with respect to m at step k. The
Hessian matrix involves second-order derivatives of the objective
function. Due to the number of unknowns in the inverse problem
this matrix is hard to compute. In our implementation, we do not
explicitly compute the inverse Hessian matrix. Instead we use the
Limited-Broyden, Fletcher, Goldfarb, and Shanno (L-BFGS) algo-
rithm (Nocedal andWright, 2006), which is a quasi-Newton method
that tries to estimate the inverse Hessian matrix using the gradients
from previous iterations. The L-BFGS method has proven to be fa-
vorable compared to standard conjugate-gradient methods (Brossier
et al., 2009).
Taking the derivatives of ΨðmÞ with respect to m gives the gra-

dient g:

g ¼
Xns
j¼0

Xnr
i¼0

∂ui;jðmÞ
∂m

r̂i;j þ λWðm −m0Þ; (5)

where

r̂i;j ¼
1

kui;jk2
ðûi;jhûi;j; d̂i;ji − d̂i;jÞ; (6)

is the residuals vector. Here, h·; ·i is the inner product on the vector
space. The first term in equation 5 is calculated using the adjoint-
state method, where the residuals r̂i;j are reversed in time and
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back-propagated from the receiver positions (Tarantola, 1984;
Mora, 1987). In our numerical modeling scheme, we use the hyper-
bolic velocity-stress wave equations (Virieux, 1986), and thus the
model gradients must be given in terms of the stress fields. The gra-
dient for the P-wave velocity VP is given as (Shipp and Singh, 2002)

∇VP
ΨdðmÞ ¼ −

ρVP

2ðλþ μÞ2
Xns
j¼0

Z
T

0

ð τzz�!þ τxx
�!Þð τzz �

þ τxx
 �Þdt; (7)

where λ and μ are the Lamé parameters, τii
! are the forward

propagated stresses, and τii
 are the reverse-time back-propagated

stresses.
In theory, it is possible to invert for densities, P-, and S-wave

velocities using FWI. However, the three parameters are strongly
correlated, and thus inverting for all three parameters increases the
amount of unknowns and the ill-posedness of the problem as well.
Therefore, we invert for the P-wave velocities and use simple em-
pirical relations to update the densities and S-wave velocities at each
iteration in the iterative algorithm. For the S-wave velocity VS we
use the mudrock line derived in Castagna et al. (1985), which is
given as

VS ¼ 0.862VP − 1172; (8)

where VP is given in m∕s. For the density ρ, we use Gardner’s re-
lation for sedimentary rocks (Gardner et al., 1974):

ρ ¼
�

1000 for VP ≤ 1500;
310V0.25

P otherwise;
(9)

where the unit for ρ is kg∕m3.
The residuals for the normalized least-squares functional 2 differs

significantly compared to the residuals for the standard least-
squares functional. An important observation is that the residuals
in our norm are equal to those that appear if a zero-lag crosscorre-
lation functional is used (Choi and Alkhalifah, 2012). The reason
for this is that the crosscorrelation and our normalized least-squares
functional theoretically are the same (up to a constant value).
When seismic data are acquired the amplitudes between

each trace may be different due to, for instance, badly calibrated
receivers. The benefit of using a normalized functional is the fact
that amplitudes are scaled within the objective function, and thus no
scaling of the data are necessary beforehand the inversion.
The success of FWI is dependent on the initial model due to the

highly nonlinear behavior of the inverse problem, and the local

optimization algorithm. Conventional methods for building initial
models are reflection tomography, migration-based velocity analy-
sis, first-arrival traveltime tomography, and others (Virieux and
Operto, 2009). Recently, Weibull et al. (2012) suggest to use
wave-equation-migration velocity analysis (WEMVA) to build re-
liable initial models for FWI. During the initial tests of our imple-
mentations, this approach has proven to provide good results.

Time-lapse full-waveform inversion

We investigate three approaches for time-lapse full-waveform in-
version (TLFWI). We denote the data set from the baseline as dbase,
and the monitor data sets as dmon. We assume that the receiver and
shot positions are equal in the data sets, and that the source signa-
tures are equal between the surveys. In this sense, we assume that
the repeatability is good between the data sets.
The first approach for TLFWI is formed by doing two indepen-

dent inversions using dbase and dmon. The initial model for the two
inversions is the same, so all changes are due to the difference in the
data sets. To reveal the changes in the models, the difference be-
tween two inverted models are computed (see Figure 1a). We call
this scheme “approach 1” in what follows.
If we assume that the changes in the subsurface between the ac-

quisitions of the two data sets are small and local, then the inverted
model from the inversion of dbase should be relatively close to the
expected inverted model using dmon. Thus, using the inverted model
for dbase as the initial model for the inversion using dbase should give
bigger chances for success. This is of course only valid if the base
inversions have converged to a reliable solution. In the end, the two
models are compared (see Figure 1b). In what follows, we call this
scheme “approach 2.”
The third approach is an extension of approach 2, where the true

monitor data set, in addition, is modified as follows (Zheng et al.,
2011)

d̂mon ¼ dibase þ ðdmon − dbaseÞ; (10)

where dibase is the inverted baseline data set. By performing this
modification, the potential time-lapse artifacts introduced by the in-
versions are reduced, due to the fact that they are included in dibase.
The time-lapse image is created by considering the difference be-
tween the inverted models (see Figure 1c). This scheme is called
“approach 3” in what follows.

Local migration regularization

LMR is an extension of approach 2. The purpose of LMR is to
remove artifacts in the time-lapse images by constraining the model

a) b) c)

Figure 1. Workflow for TLFWI. (a) Approach 1,
(b) approach 2, and (c) approach 3.
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updates locally in the models. The idea is to compute the residuals
of dbase and dmon, and migrate the residuals using the inverted model
for the baseline. To create the constraint for the model update, we
suggest to use a contrast detection algorithm in combination with a
threshold limit.
Assume that the inversion of dbase has converged and a final

model mbase has been obtained. We assume, in addition, perfect re-
peatability between the baseline data set dbase and the monitor data
set dmon. The residuals r of the two data sets, computed using equa-
tion 6, contain only data due to the changes in the subsurface. Run-
ning a migration of the residuals using the inverted model mbase,
results in an image containing information about where the changes
in the subsurface occurred.

Now, assume that a migrated image I has been obtained using the
above-mentioned procedure. The next step is to run a contrast es-
timation algorithm on I, where the image is scanned and contrasts
are detected. We use a very simple approach in which I is scanned
pixel by pixel, and if the difference between the current pixel and
the neighboring pixels is over a given threshold value, the particular
pixel is marked as a contrast pixel. Assume that I is an N ×M rec-
tangular image. We define the local contrast function as

Cði; jÞ ¼max

����� Iði; jþ 1Þ− Iði; jÞ
jImaxj þ jIminj

����;
���� Iðiþ 1; jÞ− Iði; jÞ
jImaxj þ jIminj

����
�
;

(11)

where Iði; jÞ is the pixel value at the point ði; jÞ,
Imin, and Imax are the minimum and maximum
pixel value in the image, respectively. The con-
trast image Rði; jÞ is then given as

Rði; jÞ ¼
�
1 if Cði; jÞ ≥ β;
0 otherwise;

(12)

where β is the threshold value. It is worth men-
tioning that the above algorithm can be viewed as
the simplest form of an edge detection algorithm
in image processing, and that other and more so-
phisticated contrast detection algorithms may be
used to create the contrast image.
Instead of adding the contrast image as a

weighting matrix on a regularization term to the
objective function, we multiply the gradient of
Ψ ðmÞ with the matrix. This procedure will force
the inversion to only make updates locally in the
monitor model, and thus enhance the changes of
convergence to the correct solution.

RESULTS

To investigate different aspects of the imple-
mentation of TLFWI and LMR, we use a syn-
thetic model inspired by the Gullfaks field in the
Norwegian North Sea. The target zone is a shal-
low reservoir located at 400-m depth. The syn-
thetic time-lapse effects are simulated using two
versions of the model. After the sensitivity tests,
we apply the methods on a real data set from the
Norwegian North Sea. In between the two surveys
in the real time-lapse data, one of the exploration
wells were exposed to an underground leakage.
As a result, gas leaked from the deep reservoir into
underground formations. Thus, this is a good sce-
nario for testing TLFWI and LMR.

Synthetic example

The target zone in the synthetic model is a
reservoir located at 400-m depth and position
1500–2500 m (Figure 2). To simulate time-lapse
effects, we use two versions of the models; one
where the reservoir is oil filled and one where the
reservoir is water filled. The P-wave velocities

a) b)

c)

Figure 2. The synthetic model of the Gullfaks field. (a) Density ρ, (b) VP, and (c) VS.

a) b)

Figure 3. The true time-lapse images (difference between baseline and monitor model).
(a) Density ρ and (b) VP.
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and the densities are different between the models, whereas the S-
wave velocities are equal. The differences between the two models
are small and shallow (Figure 3).
The synthetic data are generated using a standard finite-differ-

ence implementation of the elastic wave equation (Virieux, 1986).
We simulate a marine seismic survey consisting of 275 shots. The
source is located at 10-m depth. The streamer is located at 10-m
depth and consists of 130 receivers with a receiver sampling of
10 m. The source signature is a Ricker wavelet with center fre-
quency of 10 Hz. The setup is identical in the baseline and monitor
survey. The numerical grid is regular with grid size 10 m, and is the
same in the modeling and inversion. To simulate the nonreflecting
boundaries, we use perfectly matching layer ab-
sorbing-boundary conditions (Berenger, 1994;
Zhen et al., 2009). The reflecting free surface at
the top of the model is implemented using the
method described in Mittet (2002).
To create the initial model for the inversion,

we run WEMVA with a initial model that only
varies in depth (Figure 4a). The initial model
is relatively far away from the true model. The
final model for WEMVA (Figure 4b), which is
our initial model for FWI, is a smooth model
with lateral variances in the shallow part of the
model. By comparing the initial and the final
models, we observe that WEMVA has mainly
updated the shallow parts of the model.

Sensitivity analysis

The sensitivity analysis of the implementation
of FWI is carried out using the model for the
baseline case. To investigate the behavior of our
data norm, no regularization term is used in the
misfit functional 1 during the analysis. In the first
test, we invert for VP, keeping VS and ρ equal to
the true models. This is somewhat a best-case
scenario and is an easy way to investigate what
FWI is able to recover. The final inverted VP

model is shown in Figure 5a. Residual plots for
the first and last iterations for a given shot are
given in Figure 6, whereas a vertical profile is
given in Figure 7a.
Inverting for one parameter keeping the two

others equal to the true models are not realistic.
In the next test, we invert for VP and update VS

and ρ in each iteration using the empirical rela-
tions given in equations 8 and 9, respectively.
Our density and velocity models do not follow
the empirical relations, so that errors are intro-
duced in the inversion in this case. The dif-
ferences between the true model and the model
obtained using the empirical relations are for ρ in
the range −183 to 153 kg∕m3, and for VS in the
range −390 to 0 m∕s. The largest differences for
VS are for the areas inside the reservoir.
Because the differences in the true models and

the empirical models are large, we carefully
check which parameter introduces the largest
error during the inversion. We run the inversion

in which we only update ρ using the empirical relation and keeping
VS equal to the true model. The inverted VP model in this case is
given in Figure 5b. Now, we run the inversion with ρ equal to the
true model, and VS is updated using the empirical relation. The in-
verted model is given in Figure 5c. We do a final inversion where we
update ρ and VS simultaneously in the inversion. The inverted VP

model is given in Figure 5d and the vertical profile in Figure 7b.
The final test in the analysis is a comparison of elastic and

acoustic inversion using elastic data. We put VS equal to zero, and
performed an inversion for VP in which we held ρ equal to the true
model. The vertical profile and the inverted model for VP are given
in Figures 7c and 8, respectively.

a) b)

Figure 4. (a) The initial VP model for WEMVA and (b) the initial VP model for FWI
obtained using WEMVA.

a) b)

c) d)

Figure 5. Inverted VP model. (a) With VS and ρ equal to the true models, (b) with VS
equal to the true model and ρ updated using empirical relation, (c) with ρ equal to the
true model and VS updated using empirical relation, and (d) VS and ρ updated using
empirical relations.
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From this analysis, it is clear that under ideal conditions FWI is
able to recover the VP model. As information is gradually removed
the inverted models start to lose resolution. However, FWI is able to
recover the shallow parts of the models, whereas the deeper parts are
more or less unchanged. The results for the acoustic inversion prove
that the inversion fails, and the acoustic approximation is invalid in
this case.

Time-lapse analysis

The time-lapse analysis is carried out in the same manner as
the sensitivity analysis. We test the three approaches and LMR
inverting for VP using the true models for VS and ρ, and the em-
pirical relations given in equations 8 and 9.
The time-lapse images for VP using approach 1 are shown in

Figure 9, approach 2 in Figure 10, and approach 3 in Figure 11.
The contrast image using the LMR method is shown in Figure 12.
We find it inappropriate to use the sharp contrast image as a
regularization for the gradient due to artifacts in the resulting
time-lapse images. We therefore apply a triangle smoothing
operator on the contrast image before it is applied in the inversion.
The resulting time-lapse images using this method are shown in
Figure 13. The time-lapse image for acoustic FWI is given in
Figure 14.

All elastic time-lapse images suffer from artifacts in terms of os-
cillations. For the cases where VS and ρ are equal to the exact mod-
els, there are no major differences between approaches 1 and 2 in
terms of artifacts. For approach 3 and LMR there are only artifacts
above and below the time-lapse anomaly, and the total amount of
artifacts in the images are less than with the two other approaches.
For the cases where the empirical relations are used to update VS

and ρ, there are no significant differences between the images for
approaches 1, 2, and 3 in terms of artifacts. The artifacts in the LMR
image are visible in the areas where model updates are allowed. The
acoustic inversion fails in recovering the time-lapse anomaly.

Real example

The real data example is from a field in the southern part of the
Norwegian North Sea. In 1989, one of the exploration wells were
exposed to a underground leakage. As a result, gas migrated from
the deep reservoir into shallow underground formations. The under-
ground leakage lasted for 326 days, and was stopped by a relief
well. During the period of drilling the relief well, several seismic
surveys were acquired for monitoring the situation. We use two data
sets from the surveys; the baseline data set is a survey acquired in
1988, that is, before the blowout, and the monitor data set is from a
survey in 1990, after the relief well was drilled. We refer to Landrø

(2011) for a more detailed explanation of the
underground blowout, and time-lapse analysis
results.
Each of the two data sets consists of 460 shots.

The streamer has 95 receivers with a spacing of
12.5 m. The total streamer length is 1253 m, and
the shot sampling is 12.5 m. To transform the
data sets from a real 3D world into our 2D
numerical setting, the data sets were regularized
into the same rectangular grid using linear inter-
polation. By comparing the two data sets using a
time-shift crosscorrelation function, a static time-
shift of 2 ms was found and removed. The data
sets were multiplied with a square-root-of-time
gain function to account for the 3D wave propa-
gation. Both data sets suffer from several notches
in the frequency spectra, so a band-pass filter
with frequency band 2–20 Hz was applied. The
numerical modeling is performed using a rectan-
gular grid with grid size 6.25 m, and is the same
for the modeling and inversion. The initial model
is once again produced using WEMVA.
We start the inversion by estimating the source

signatures. To do this, we use the FWI method
where the model parameters are kept constant
during the iterations, and only the source signa-
ture is updated in each iteration. The VP model is
the WEMVAmodel, and the VS and ρmodels are
obtained using the empirical relations in equa-
tions 8 and 9, respectively. We estimate a source
signature for each data set.
During the preliminary test runs, severe oscil-

lations were present in the final inverted models.
To remove the artifacts, we add the prior regulari-
zation term 3. The λ factor in 1 is determined

a) b) c)

d) e) f)

Figure 6. Trace residuals for the sensitivity analysis. (a-c) At first iteration and (d-e) at
last iteration.
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such that the ratio between the data term and the regularization term
is 10−3.
The inverted models for the baseline data set are given in Fig-

ure 15. We observe several horizontal layers at different depths, and
some dipping structures are visible at approximately 200–400 m
depth and position 1750 m.
The final time-lapse images using elastic and acoustic inversions

are given in Figures 16 and 17, respectively. The leaking well is
placed at approximately position 2200 m in the figures. Common
in all images using elastic inversion is a clear anomaly visible at

approximately 500-m depth and around the position of the well. The
elastic time-lapse images using approaches 1, 2, and 3 (Figure 16a,
16b, and 16c) show repeated anomalies at position 1000 m. There
are significant differences in the time-lapse images obtained using
approaches 1 and 2, and the time-lapse image using approach 3.
As in the synthetic case, we observe large differences between the
acoustic and the elastic time-lapse images. The acoustic time-lapse
image (Figure 17) shows large horizontal anomalies in depth. The
sea-bottom is approximately at 70-m depth, and we observe that
there are clear effects at that position in the elastic and acoustic
time-lapse images.
Figure 18 shows traces from the real and inverted baseline data

sets. We observe that the inversion is able to match the true baseline
data set. In Figure 19 residual traces between the baseline and mon-
itor data sets for the real and inverted data sets are shown. We ob-
serve that the events are correctly placed in time, but that the
amplitudes between the real and inverted residuals differ.

DISCUSSION

The synthetic tests show that FWI is able to recover the model
parameters, and reveal time-lapse changes in the velocity models.
Artifacts from the inversions are visible in all time-lapse images for

a) b)

c)

Figure 7. Vertical profiles of the VP model (true model: solid line,
initial model: dot-and-dashed line, the inverted model: dotted line).
(a) Here, ρ and VS known, (b) empirical relations, and (c) acoustic
inversion.

Figure 8. Acoustic FWI with ρ equal to the true model.

a)

b)

Figure 9. Time-lapse images for VP using approach 1. (a) When VS
and ρ are equal to the true models and (b) when empirical relations
are used to update VS and ρ.
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the different approaches tested. As a consequence of the model up-
date constraint in LMR, the images using LMR contain only arti-
facts in the areas where the models are allowed to be updated.
The FWI is a highly ill-posed problem, and inverting for all three

model parameters at the same time is hard to accomplish. To be
more precise; in our synthetic and real examples, the only parameter
we were able to invert for using FWI was the P-wave velocity
model. Away to get estimates for the two other parameters is to use
empirical relations to link the inverted parameter with the two other
parameters. This produces the best results when we only invert for
one parameter. On the other hand, empirical relations should be
used with extreme care because they are valid for restricted rock
types, and they may introduce spurious structures in the subsurface,
which in some cases may be problematic. We believe, however, that
it is better to update the two parameters during the inversion, than
keeping them constant during the iterations, as long as the empirical
relations are relatively close to true models.
Our synthetic models do not follow the empirical relations we use

in the inversion. From the sensitivity analysis (Figure 5) it is clear
that it is important to use empirical relations that are close to
the true models. The relation for the density gives models that
are relatively close to the solution, whereas the relation for the
S-wave velocity gives models that are far away from the true model.
The inversion results using the S-wave relation (Figure 5c and 5d),

are mainly a consequence of the fact that the empirical relation is
not able to predict the correct S-wave velocities inside the reservoir.
The empirical S-wave relation has introduced a spurious structure in
the subsurface, and the consequences of this fake structure on the
time-lapse images are large (Figures 9–11 and 13). The time-lapse
artifacts are large when empirical relations are used without any
kind of regularization or model constraint.
With this in mind, one can question the validity of the empirical

relations used to update the density and S-wave velocity models for
the real example. The choice of empirical relations was based on
knowledge of the rock types from the area that the example is taken
from. The density relation 9 is valid for many rock types (Gardner
et al., 1974), whereas the S-wave relation 8 is valid mainly for mud-
rocks (Castagna et al., 1985). We therefore believe that our choice
of empirical relations is relatively close to the real models. Of
course, our results should be interpreted with caution because the
empirical relations are not a perfect match of the truth.
The failure of the acoustic inversion (Figures 8, 14, and 17) is

somewhat of a surprise. The major difference between acoustic
and elastic data, is the amplitudes of the events in the data due to
the differences in the reflection and transmission coefficients. From
this, it is obvious what happens during the acoustic inversion.
To match the amplitudes, the inversion updates the velocity model
too much (Figure 7c). The acoustic time-lapse image for the real

a)

b)

Figure 10. Time-lapse images for VP using approach 2. (a) When
VS and ρ are equal to the true models and (b) when empirical rela-
tions are used to update VS and ρ.

a)

b)

Figure 11. Time-lapse images for VP using approach 3. (a) When
VS and ρ are equal to the true models and (b) when empirical rela-
tions are used to update VS and ρ.
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example (Figure 17) shows several horizontal time-lapse effects,
which obviously is not correct. The results show that elastic theory
is important for the success of FWI using data that primarily consist
of reflected events and support the findings of Barnes and Char-
ara (2009).
The LMR approach is an idea for removing most of the artifacts,

by only allowing the monitor model update for certain parts of the
model. The time-lapse image, using empirical relations and LMR
(Figure 13b), manages to reveal the shape of the anomaly satisfac-
torily, still with artifacts above and below the anomaly. It turns out
that the success of LMR is dependent on the migration method, the
models, and the contrast detection method used. If the contrast im-
age is too strict, important anomalies may be overlooked in the
time-lapse images. On the other hand, such a constraint may result
in better focusing of the major events in the data sets. An improve-
ment of the approach is to use a more intelligent contrast detection
algorithm, which works on the whole image, and not on a pixel-by-
pixel basis. Though not formally correct mathematically, changing
the gradient gives better convergence of the inverse method, and
thus better time-lapse images.
The conversion of the real data sets from 3D to 2D, may influence

the inversion results (Auer et al., 2013). The inversions may intro-
duce spurious results that overwhelm subtle changes sought during
time-lapse inversion. Moreover, the two data sets may include dif-
ferent time-dependent error sources, which FWI will explain by
changing the models differently in the inversions. Such discrepan-
cies may have impact on the final time-lapse images.

The success of FWI is dependent on the source function used in
the inversions. For the real example, we estimated source signatures
for each of the data sets using FWI, and used the same source sig-
nature for all the shots in each data set. In an inversion setup, this

a)

b)

Figure 12. Contrast images created using the LMR method. (a) Be-
fore smoothing and (b) after smoothing.

a)

b)

Figure 13. Time-lapse images for VP using approach 2 and LMR.
(a) When VS and ρ are equal to the true models and (b) when em-
pirical relations are used to update VS and ρ.

Figure 14. Acoustic time-lapse image with ρ equal to the true
model.
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may be too strict an assumption, even though the
repeatability of the air gun signatures are consid-
ered good. An alternative, is to estimate the
source signature in each shot using our approach.
Another alternative is to use the method de-
scribed by Maurer et al. (2012), where one in
addition to the source signatures solve for
source-receiver coupling effects.
The results for the real example should be in-

terpreted with all the above-mentioned uncertain-
ties in mind.
The comparison of the real and synthetic data

sets (Figures 18 and 19) shows that the inversion
is able to produce synthetic data that are close to
the real data. The major differences between the
real and the inverted data sets are in the residuals
between the baseline and monitor data sets. The
difference can be explained by the fact that the
real experiment is a 3D problem, which we have
approximated using a 2D approach in the inver-
sion. Another explanation is that the inversions
are focused on minimizing the residuals of the data
set itself, and not the residual between the data sets.
The time-lapse images for the real leakage

well (Figure 16) show several interesting anoma-
lies. The largest common anomaly in all images
is located at approximately 500-m depth. There
is a sand layer at 490-m depth and smaller sand
layers at 523- and 562-m depth (Landrø, 2011).
During the leakage, gas migrated into the sand
layer at 490-m depth, and there could be gas in-
side the small sand layers at the deeper depths
(Landrø, 2011). Gas in the sand layer should re-
sult in a decrease in P-wave velocity in this area.
On the time-lapse images a decrease in P-wave
velocity in this area is clearly visible. Above
and below the negative time-lapse anomaly, pos-
itive anomalies are visible. We believe that the
positive anomalies are a consequence of the
limited-offset and the low frequencies in the real
data sets, and thus are artifacts from the inver-
sions. On the images using approach 3 and LMR
(Figure 16c and 16d), a second negative anomaly
is visible at approximately 525-m depth. This
anomaly may be the result of gas in the sand
layer at 523-m depth, or it could be an artifact
from the anomaly at 500-m depth.
The relief well was drilled at a distance of

1.2 km from the leaking well. It is interesting that
some repeated anomalies are visible at the 1000-
m position (Figure 16a, 16b, and 16c), which is
close to the position where the relief well is lo-
cated in the image. It is a surprise that this well
seems to be visible in the time-lapse images. The
relief well was drilled on the edge of the area that
was filled with leaked gas. Thus, gas may have
migrated along the walls of the well, or the well
itself produced seismic differences that give the
time-lapse response.

a) b)

c) d)

Figure 16. Time-lapse images for VP for the real example. (a) Approach 1, (b) approach
2, (c) approach 3, and (d) LMR.

a) b)

c)

Figure 15. Inverted models for the baseline data set for the real example. (a) Density ρ,
(b) VP, and (c) VS.
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There is a significant difference between the time-lapse image for
approach 3 and the other time-lapse images. The two data sets were
not acquired with time-lapse imaging in mind, and as a result the
repeatability in the data sets is not as good as it may have been. The
residual between the baseline and monitor data sets, which is used
to create the new monitor data set for approach 3, is influenced by
this fact. We believe the anomalies on the left and in the upper parts
in the image are time-lapse artifacts introduced by the monitor in-
version to explain the differences due to the repeatability issue.

CONCLUSION

We have used FWI on synthetic and real limited-offset time-lapse
data sets. The synthetic and real tests show that elastic theory
is necessary for the success of FWI when seismic data primarily
consisting of reflected events are used. We have introduced an
LMR method, whose purpose is to reduce time-lapse artifacts. This
method, in addition to three other approaches for creating time-
lapse images using FWI, have been tested. All approaches are able

to reveal time-lapse changes, though with small
differences. The LMR approach is able to re-
move time-lapse artifacts by allowing only the
updates to be performed in specific parts of
the model.
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