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a b s t r a c t

The vertical stratification of carbon dioxide (CO2) injected into a deep layered aquifer made up of high-
permeability and low-permeability layers, such as Utsira aquifer at Sleipner site in Norway, is investi-
gated with a Buckley–Leverett equation including gravity effects. In a first step, we study both by theory
and simulation the application of this equation to the vertical migration of a light phase (CO2), in a denser
phase (water), in 1D vertical columns filled with different types of porous media: homogeneous, piece-
wise homogeneous, layered periodic and finally heterogeneous. For each case, we solve the associated
Riemann problems and propose semi-analytical solutions describing the spatial and temporal evolution
of the light phase saturation. These solutions agree well with simulation results. We show that the flux
continuity condition at interfaces between high-permeability and low-permeability layers leads to CO2

saturation discontinuities at these interfaces and, in particular, to a saturation increase beneath low-per-
meability layers. In a second step, we analyze the vertical migration of a CO2 plume injected into a 2D
layered aquifer. We show that the CO2 vertical stratification under each low-permeability layer is
induced, as in 1D columns, by the flux continuity condition at interfaces. As the injection takes place
at the bottom of the aquifer the velocity and the flux function decrease with elevation and this phenom-
enon is proposed to explain the stratification under each mudstone layer as observed at Sleipner site.

! 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Underground injection and long-term storage of carbon dioxide
(CO2) is now recognized as one possible method to reduce CO2

emissions to the atmosphere. Candidate sites for injection include
geologic formations such as petroleum reservoirs [15,18,19] and
deep saline aquifers [4,14,17]. The former are preferred due to their
proven seal, but the latter are much more common worldwide.
Unfortunately, aquifers are much less characterized than petro-
leum reservoirs and there is normally no proof that the caprock
is perfectly impervious. Characterization of the aquifer is an impor-
tant part of the total evaluation of the aquifer as a reliable long-
term CO2 sequestration site.

An ongoing project is the Sleipner project in Norway which has
demonstrated the feasibility of industrial CO2 injection into the
Utsira saline aquifer of Sleipner Vest field [31] (!106 tons/year).
This site is located in the Norwegian sector of the North Sea, where
about 8 million tons of CO2 have been injected since 1996 into the
Utsira Sand, an approximately 200-m thick saline aquifer located at
a depth of 1012 m below sea level. CO2 is injected at the bottom of
the aquifer and migrates under the combined action of injection
and gravity (Fig. 1). At the aquifer conditions, CO2 is less dense than

the aquifer brine and therefore rises buoyantly. By 1999, the CO2

appeared to have reached the top of the reservoir. Well and seismic
data obtained prior to the injection showed that the aquifer sand-
stone is divided by nearly horizontal discontinuous thin mudstone
layers [21]. Seismic profiles measured in 1999, 2001 and 2002
showed large increase in reflectivity indicating individual CO2

accumulations under mudstone layers (Fig. 2).
Mathematical models and numerical simulation tools play an

important role to evaluate the feasibility of CO2 storage in subsur-
face reservoirs, to design and analyze field tests, and to design and
operate geologic CO2 disposal systems. Numerical simulators can
solve complex partial differential equations that describe the phys-
ics realistically, but the accuracy of results depend both on numer-
ical scheme and spatial and time discretizations. In recent years, a
lot of research work dealt with numerical simulation of CO2 injec-
tion processes into geological formations [6,25,27,28], see for in-
stance the international project Geoseq, initiated a few years ago
by the Lawrence Berkeley National Laboratory in the USA [29].

On the other hand, semi-analytical models have been developed
to provide solutions, either for code validation or for a better under-
standing of flow and migration processes at the different space and
time scales of interest. Recently, different authors developed sharp-
interface models to study the CO2 plume dynamics during and after
injection. The sharp-interface relies on two main assumptions (e.g.
[12]): (i) the fluids are completely segregated and therefore sepa-
rated by a sharp-interface, (ii) pressure is hydrostatic in both fluids
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and flow is parallel to the aquifer boundary. Following this approx-
imation, Nordbotten et al. [24] developed an analytical solution for
CO2 injection into aquifers, and proved through an intercomparison
exercise with the simulator ECLIPSE developed by Schlumberger
(Schlumberger Information Systems), that this solution captures
well the migration process for different storage conditions. In a first
paper, Hesse et al. [12] studied the plume dynamics during and
after injection by means of similarity solutions. In a second paper
[13], they studied the long-term migration of the CO2 plume in a
sloping aquifer and assessed the impact of residual trapping. These
models can be also fast and efficient tools to model experimental
results and infer storage properties as showed by Bickle et al. [5]
in their modeling work on Sleipner injection experiment. They used
an analytical solution developed by Lyle et al. [22] for an axisym-
metric geometry to discuss the dynamics of CO2 accumulation ob-
served on the site, i.e. growth of CO2 layers radii and thicknesses,
under eachmudstone layer as imaged by seismic reflection profiles.

All these sharp-interface models address the issue of CO2 hori-
zontal spreading under an impervious layer. As the fluid relative-
permeabilities are neglected, they cannot be used to study the
CO2 vertical migration through the different Utsira layers, and
the progressive stratification observed at the site.

In this paper, we propose a theoretical investigation, supported
by numerical simulation, of the CO2 vertical migration in layered
porous media of Sleipner type. The equation governing CO2 satura-
tion is a Buckley–Leverett equation with gravity [3,9,11]. Very few
theoretical works have been done on this type of equation in het-
erogeneous porous media and most of the existing works investi-
gated, partially, the Riemann problems at the interface between

two porous media and addressed the related numerical issues.
We can cite for instance Kaasschieter [16] or Adimurthi et al. [1]
who studied the Riemann problem raised by the flux discontinuity
at the interface of two porous media and proposed numerical strat-
egies, based on Godunov method, to solve the problem.

We study in a first step the migration of a CO2 gas zone in a ver-
tical column filled with a homogeneous porous medium. Then, the
saturation evolution at the interface of two different porous media
is analyzed and the associated Riemann problems are solved. The
flux continuity imposed at this interface implies a saturation dis-
continuity. Then, depending on the flux value, the CO2 accumulates
or/and passes through the interface. We derive a semi-analytical
solution for the case of one-dimensional layered porous medium
which describes the spatial and temporal evolution of the satura-
tion through the column. The study is extended to the two-dimen-
sional case, 2D vertical cut of a periodic layered aquifer, and we
propose an explanation of the observed CO2 stratification in the
Utsira aquifer.

2. Incompressible and immiscible two-phase flow model

The flow of two incompressible fluids, water and CO2, in a por-
ous medium is described by the saturation equation and the gen-
eralized Darcy law of the liquid (water) and gas (CO2) fluid
phases. The saturation equation of phase a is given by [3]:

/
@Sa
@t

þr # va ¼ qa; a ¼ w; g; ð1Þ

where / is the porosity of the medium, Sa, va and qa the saturation,
the generalized Darcy velocity and the sink/source term of phase a,
respectively. The subscripts w and g denote the gas and water
phases, respectively, r# ¼ @

@x ;
@
@z

! "> is the divergence operator, x
and z denote the coordinates in the horizontal and vertical direc-
tions. In this paper, we assume that both fluids are incompressible.
Indeed, the vertical extent where the solution is analyzed (between
two low-permeability layers) is not too large relative to the abso-
lute depth, so the variation of the hydrostatic pressure is not large.

The velocity va is described by the generalized Darcy law as
follows:

va ¼ ' kkra
la

rðpa þ qagzÞ; a ¼ w; g; ð2Þ

where k is the absolute permeability of the porous medium, g the
gravity acceleration, pa, qa, kra and la the pressure, density, rela-
tive-permeability and viscosity of phase a, respectively. The phase
saturations are constrained by:

Sw þ Sg ¼ 1 ð3Þ

and the two-phase pressures are related by the capillary pressure
(pc) function:

Fig. 2. Seismic reflection profiles in 1994, 1999, 2001 and 2002. The 1994 pre-injection profile shows the base and top of the Utsira Sand but little detail within the reservoir.
The subsequent post-injection profiles show bright reflections where CO2 is ponding under thin mudstones. Note the pushdown of the basal Utsira Sand reflection resulting
from low velocity of CO2 in the reservoir and development of a low amplitude vertical ‘‘chimney” just to left (south) of the injection point (IP) presumed to be the main
vertical conduit of CO2 in the plume. Layers are numbered in 2002 profile (after Bickle et al. [5]).

Fig. 1. Schematic illustration of CO2 injection at Sleipner and rising CO2 plumes
being partially trapped under thin mudstones before reaching Nordland Shale
caprock. Note the vertical exaggeration (after Bickle et al. [5]).
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pcðSgÞ ¼ pg ' pw: ð4Þ

To eliminate the unknown pressure gradient, following the frac-
tional flow theory, we use the total flow velocity [11]:

v ¼ vg þ vw: ð5Þ

The gas phase velocity vg can be expressed as a function of the total
velocity and the capillary pressure gradient by using Eqs. (2), (4)
and (5):

vg ¼
kg

kg þ kw
v þ k

kgkw
kg þ kw

ðqw ' qgÞgrz' k
kgkw

kg þ kw
rpc: ð6Þ

In Eq. (6), ka ¼ kra
la

is the mobility of phase a.
Since the solubility of the supercritical CO2 in water is low, we

can neglect it during the injection phase which is studied in this
paper. The three terms in Eq. (6) correspond to the three driving
forces of the CO2 plume vertical migration: injection, gravitation
and capillarity. In this paper, we consider the two first forces
(injection and gravitation) and capillarity is neglected. In the
framework of this assumption, the proposed model (without capil-
larity) allows to explain the CO2 vertical stratification in a deep lay-
ered aquifer. Then, with this assumption and after substitution of
Eq. (6) into Eq. (1) for a = g, we obtain the saturation equation of
the gas phase as a balance equation:

/
@Sg
@t

þr # FðSgÞ ¼ qg; ð7Þ

where

FðSgÞ ¼ f ðSgÞ½v þ kðqw ' qgÞgkwðSgÞrz) ð8Þ

is the global flux function and f ðSgÞ ¼ kg
kgþkw

is the fractional flow
(flux) function of the gas phase.

Adding the two-phase saturation equations given in Eq. (1) and
using Eqs. (3) and (5), we obtain for qw = 0:

r # v ¼ qg: ð9Þ

According to Eqs. (2) and (5), the total velocity v can be expressed in
terms of the gas pressure gradient as follows:

v ¼ 'kðkg þ kwÞrpg ' kðkgqg þ kwqwÞgrz: ð10Þ

The system of Eqs. (7)–(10) is solved with appropriate initial and
boundary conditions which describe the initial saturation, boundary
pressure and external flow rate. Let C = CD [ CN be the boundary of
the computational domain X, where CD and CN are non-overlap-
ping boundaries corresponding to Dirichlet and Neumann boundary
conditions. The saturation equation (7) is subject to the following
initial and boundary conditions:

Sg ¼ S0; in X;

Sg ¼ SN; on CN;
ð11Þ

and the balance equation (9) is subject to:

pg ¼ pD; on CD;

v # n ¼ qN ; on CN ;
ð12Þ

where S0 is the initial saturation, SN the boundary saturation of the
injected fluid (CO2) at CN, pD and qN the imposed pressure and in-
jected rate at CD and CN, respectively, and n the outward unit nor-
mal vector.

Index g is now omitted in the system of Eqs. (7)–(12) and S = Sg
represents the gas (CO2) saturation.

The resolution of system (7)–(12) requires the knowledge of rel-
ative-permeability laws. We assume that relative-permeabilities
depend on the gas saturation only:

kra ¼ kraðSÞ; a ¼ g; w: ð13Þ

Many relative-permeability laws exist in the literature. They are
usually written as functions of the effective gas phase saturation:

Seg ¼
S' Srg

1' Srg ' Srw
; ð14Þ

where Sra (a = g,w) is the relative (or irreducible) saturation of
phase a.

The most used relative-permeability laws for CO2 migration in
geological media are the Brooks–Corey [7] and van Genuchten
[32] laws. In this work, we use the Brooks–Corey relative-perme-
ability laws which are defined by:

krwðSÞ ¼ ð1' SegÞ
2þ3k
k ;

krgðSÞ ¼ S2eg 1' ð1' SegÞ
2þk
k

h i
;

ð15Þ

where k is the pore size distribution index. In this paper, we take
k = 2 which corresponds to Corey model.

The model is solved with the numerical code (Cast3M) devel-
oped by the french Atomic Energy Commission (CEA) (see the web-
site www-cast3m.cea.fr for more information about Cast3M). A
Mixed-Hybrid Finite Element (MHFE) formulation is used to solve
the general flow Eqs. (9) and (10) and the advection term in Eq. (7)
is discretized with a classical upwind scheme. The time discretiza-
tion is implicit and the nonlinear terms are solved with an iterative
Picard algorithm. The coupling between the flow and the satura-
tion transport equations is sequential-iterative.

3. Injection and migration in a vertical column

In order to analyze the vertical migration of a CO2 plume in a 2D
heterogeneous aquifer, we consider in a first step the migration of
a plume injected into a vertical column filled with different types
of porous media and initially saturated with water. For
simplification, we assume that the porosity / is constant. Then,
the governing equation is obtained by writing Eq. (7) along the ver-
tical direction:
@S
@t

þ @

@z
FðSÞ ¼

qg

/
; ð16Þ

where

FðSÞ ¼ 1
/
f ðSÞ v þ

kðqw ' qgÞg
lw

krwðSÞ
# $

ð17Þ

is the global flux function. In this case where the geometry is 1D and
vertical, the total velocity v is constant. This saturation equation
with the global flux function is the Buckley–Leverett equation with
gravity [3,9,11].

First, we consider the homogeneous case where k is constant
and we apply the method introduced by Proskurowski [26] to con-
struct the solution of the Riemann problem associated to the Buck-
ley–Leverett equation (16). Then, we study the solution behavior at
a permeability discontinuity. Finally, we consider the injection in a
column filled with a heterogeneous layered porous media. Semi-
analytical solutions are derived and compared to numerical ones.
In all cases, we use the Brooks–Corey relative-permeability laws
and assume that Srg = Srw = 0. The physical parameters of the test
cases are given in Table 1.

3.1. Homogeneous porous medium

In the case of an injection in a homogeneous porous medium,
the migration regime depends mainly on two parameters, the
injection rate v and the mean ascent velocity:

G ¼
kðqw ' qgÞg

lw
krw; ð18Þ
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where

krw ¼ 1
1' Srg ' Srw

Z 1'Srw

Srg
krwðSÞdS ð19Þ

is the averaged relative-permeability of the water phase. Let us
introduce the dimensionless parameter h ¼ v

G, similar to the gravity
number introduced by Riaz and Tchelepi [30]. If h* 1, the plume
ascent is essentially injection driven and does not depend on the
absolute permeability. On the contrary, if h+ 1, the ascent is buoy-
ancy driven and depends on the absolute permeability.

With the relative-permeability laws presented in Section 2, the
function f is a monotonic increasing ‘‘S-shaped” function. The
shape of the global flux F depends on the value of h. Indeed, if
h* 1, function F is also a ‘‘S-shaped” function, and if h+ 1, it is

a ‘‘bell-shaped” function. The general shapes of function F are dis-
played in Fig. 3 for the two cases h* 1 and h+ 1.

In the injection driven case (h* 1) we have FðSÞ ’ 1
/ f ðSÞv , and

Eq. (16) corresponds to the well known Buckley–Leverett equation
[8]. The solution of this equation can be obtained with the Welge
tangent method [11].

In the buoyancy driven case (h+ 1), Eq. (16) corresponds to the
Buckley–Leverett problem with gravity [2,23,26,33] and the global
flux F(S) displays two inflection points as shown in Fig. 3. The solu-
tion of the corresponding Riemann problem can be constructed
from the convex or/and concave hull(s) of the flux function
[2,9,10,26]. We follow here the method proposed by Proskurowski
[26]. This method is applied to the problem of a CO2 plume which
migrates in a homogeneous column under the action of buoyancy
only (h = 0).

3.1.1. Solution of the Riemann problem
A Riemann problem is defined by a saturation equation (16)

with an initial saturation discontinuity at one point. If this initial
discontinuity is located at z = n with two constant states, an up-
stream state Su ¼ limz!n'Sðz; t ¼ 0Þ and a downstream one
Sd ¼ limz!nþSðz; t ¼ 0Þ, the solution will travel as a rarefaction
wave(s) and/or as a shock(s). Let S' ¼ limz!n'Sðz; tÞ and
Sþ ¼ limz!nþSðz; tÞ be the limiting values from the left and the right,
respectively, at the discontinuity. To obtain a unique weak solution
(i.e. the physical solution) of the Riemann problem, the following
conditions must hold along any curve of discontinuity of S(z, t):

, (i): The Rankine–Hugoniot jump condition (see, for example,
[2]): the curve of discontinuity is a straight line with slope
r';þ ¼ FðSþÞ'FðS'Þ

Sþ'S' .
, (ii): The entropy condition (see, for example, [11]): FðSÞ'FðS'Þ

S'S' P
r';þ P FðSÞ'FðSþÞ

S'Sþ , for any S between S' and S+.

Graphically, the solution of the Riemann problem with an initial
saturation discontinuity defined by Su and Sd can be constructed as
follows:

, (I): If Su < Sd then we construct the convex hull !F of F over [Su,Sd].
The part(s) of !F constituted by straight lines represent(s) the
shock(s), and the part(s) of !F which coincide(s) with the graph
of F represent(s) the rarefaction wave(s).

, (II): If Su > Sd then we construct the concave hull bF of F over
[Sd,Su]. The part(s) of bF constituted by straight lines represent(s)
the shock(s), and the part(s) of bF which coincide(s) with the
graph of F represent(s) the rarefaction wave(s).

Let us note that if two saturation values are connected by a
shock, they verify condition (ii) and this shock travels with a veloc-
ity r',+ given by (i).

3.1.2. Dynamics of a CO2 plume under the action of gravity alone
Few authors have investigated the unidimensional vertical

dynamics of a light phase in a denser one. One may cite for in-
stance the recent work of Cunha et al. [10] who performed a labo-
ratory experiment to analyze the motion of gas (atmospheric air)
and liquid in a porous medium under the condition of vertical
equilibrium, i.e. the total velocity equal to zero.

In our application the gas is CO2 and the plume is initially lo-
cated between z1 = 2 m and z2 = 4 m in a 7-m long column with
an initial saturation S0 = 0.7. With the vertical equilibrium condi-
tion, i.e. v = 0, the plume rises under the action of buoyancy only.
The flux function has the bell shape shown in Fig. 4a.

This example exhibits two Riemann problems, the first one is
located at z = z1 with Sd = S0 and Su = 0 and the second one at
z = z2 with Sd = 0 and Su = S0. For the first problem, we consider

Table 1
Fluid properties and parameters of column simulations.

Porous media properties:
/ All cases: 0.35
k (m2) Homogeneous case: 3 - 10'12

Case (1a): k1 = 10'13, k2 = 5 - 10'14

Case (1b): k1 = 5 - 10'14, k2 = 10'13

Case (2a): k1 = 2 - 10'13, k2 = 10'13

Case (2b): k1 = 10'13, k2 = 2 - 10'13

Periodic column: k1 = 10'13, k2 = 5 - 10'14

Non-periodic column: k1 = 2 - 10'13, k2 = 10'13,
k3 = 5 - 10'14

Fluid properties:
qw (kg m'3) 997.42
qg (kg m'3) 716.7
lw (kg m'1 s'1) 5.98 - 10'4

lg (kg m'1 s'1) 5.98 - 10'4

Srw 0.0
Srg 0.0
krw Brooks–Corey
krg Brooks–Corey

Initial conditions:
S0 0.0

Well boundary condition:
SN 1.0
v (m s'1) Homogeneous case: 0.0

Cases (1a), (1b), periodic and non-periodic column:
2.21 - 10'8

Cases (2a) and (2b): 4.42 - 10'7

Spatial discretization:
Grid resolution Dz

(m)
1.2 - 10'3

Fig. 3. General shapes of the flux function F for the two cases: injection driven
(h* 1) and buoyancy driven (h+ 1).
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the convex hull of the flux function and apply item (I); then the
solution is made of a rarefaction wave (r1) and a shock (s1) which
both travel upward. For the second problem, the concave hull is
considered and item (II) is applied; then two shocks (s2) and (s3)
traveling in opposite directions are created, separated by a rarefac-
tion wave (r2). Fig. 4a summarizes graphically this resolution
method.

Fig. 4b shows a comparison between numerical and semi-ana-
lytical solutions at a short time. The semi-analytical solution is ob-
tained as follows: a saturation S which belongs to a rarefaction
wave, (r1) or (r2), travels at a velocity vS equal to F0 (S) and its tra-
jectory is given by the method of characteristics [3]:
zS = zS(0) + F0(S)t. Each shock (s1,s2,s3) travels with a velocity equal
to the slope of the straight line which connects the saturation val-
ues at each side of the considered discontinuity (Fig. 4b). As we re-
mark in this figure, the velocity of (s3) is greater than that of (s1),
indicating that the plume spreads. As shocks (s1) and (s2) propagate
in opposite directions, the area of the plume saturated with S = S0

shrinks as time increases and disappears when (s1) and (s2) meet
together. We can remark the good agreement between semi-ana-
lytical solution and simulation.

3.2. Piecewise homogeneous porous medium

The influence of permeability heterogeneity on the solution of
the Buckley–Leverett equation with gravity is rarely studied in
the literature. We can cite the works of Kaasschieter [16], Langtan-

gen et al. [20] or Adimurthi et al. [1] who solve theoretically and/or
numerically the Riemann problems associated to the Buckley–Lev-
erett equation with a permeability discontinuity and in presence of
gravity. In their studies, the discontinuity location is the same for
both the initial saturation and the permeability. This assumption
is quite restrictive and does not allow to analyze the problem of
a plume migration through a permeability distribution.

In this section, we consider the injection of CO2 at the bottom of
a vertical 6-m long column filled with a composite porous medium.
Region 1 (z < z0) is filled with medium 1 and region 2 (z > z0) with
medium 2, where z0 = 3 m is the interface location. We note ki and
Fi the absolute permeability and the flux function of porous med-
ium i, respectively. Both media have the same Brooks–Corey rela-
tive-permeability. The CO2 migration regime depends on two
dimensionless parameters: "h ¼ maxðh1; h2Þ, where hi ¼ v

Gi
with v

being the injection rate and Gi the mean ascent velocity given by
Eq. (18), and the ratio r ¼ k1

k2
. According to Section 3.1, the migration

regime is buoyancy driven when "h + 1 and it is injection driven
when "h * 1. Therefore, we distinguish four cases of interest:

, Case (1a): "h + 1 and r > 1.
, Case (1b): "h + 1 and r < 1.
, Case (2a): "h * 1 and r > 1.
, Case (2b): "h * 1 and r < 1.

In all these cases,we assume Srg = Srw = 0 and S(0, t) = 1 (fixed sat-
uration at the bottom of the column z = 0). For cases (1a) and (1b),
we note Smax,i the saturation for which Fi is maximum (i = 1,2). We
note Swi the saturation such that the straight line joining
(S = 0,Fi(0)) to (Swi,Fi(Swi)) in the (S,F(S)) plane is tangent to Fi(Swi)
(i = 1,2). When "h + 1 this straight line is the Welge tangent.

3.2.1. Case (1a): Buoyancy driven and k1 > k2
Initially, the saturation discontinuity is located at the injection

point (z = 0), with Su = 1 and Sd = 0. Then, according to item (II) of
Section 3.1, we consider the concave hull bF1 of F1 over [0,1]
(Fig. 5a). For saturations S > Smax,1, we have bF 0

1ðSÞ < 0, therefore
these saturations travel downward. Since injection takes place at
the bottom in the ascending direction, only saturations defined
by S 2 [0,Smax,1] must be considered. Consequently, the solution is
made of a rarefaction wave (r1) from S = Smax,1 to S = Sw1 and a
shock (s11) from S = Sw1 to S = 0.

For z < z0 and t > 0, each saturation of the rarefaction wave (r1),
S(z, t) 2 [Sw1,Smax,1], is described by the trajectory zSðtÞ ¼
F 0
1ðSðz; tÞÞt and the shock location is given by zðtÞ ¼ F1ðSw1Þ

Sw1
t. CO2

reaches the interface between the two regions (z = z0) at
t. ¼ z0Sw1

F1ðSw1Þ
.

For t > t*, the flux must be continuous at the interface. This con-
dition leads to a saturation discontinuity at this interface defined
by S'ðz0; tÞ ¼ limz!z'0

Sðz; tÞ and Sþðz0; tÞ ¼ limz!zþ0
Sðz; tÞ, and such

that F1(S'(z0, t)) = F2(S+(z0, t)). Langtangen et al. [20] and Kaasschi-
eter [16] propose entropy conditions to determine the evolution
of the discontinuity which is solution of the Riemann problem at
the interface. These entropy conditions are derived from a regular-
ization procedure, where a small diffusion term is added to the sat-
uration equation. In order to determine S'(z0, t) and S+(z0, t) at each
time t > t*, we use results obtained by Kaasschieter [16].

The construction of the solution is illustrated in Fig. 5a. Let us
call S1(z, t) the saturation computed in the homogeneous porous
column case (k1 = k2) at time t. For t < t*, S(z, t) = S1(z, t) and for
tP t*, S1(z0, t) is the saturation arriving at z = z0 at time t. According
to the time evolution previously described, we have
Sw1 6 S1(z0, t) 6 Smax,1. Then, the flux at the interface is greater than
the maximal flux in medium 2 (see Fig. 5a). Continuity of flux at
the interface can only be satisfied if the flux at this interface is re-
duced to a value equal to the maximal flux of medium 2. Then,

a

b

Fig. 4. CO2 plume migration in a vertical column filled with a homogeneous porous
medium: (a) construction of the convex and concave hulls for a plume of initial
saturation S0; (b) analytical and numerical solutions at a short time.
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S+(z0, t) = Smax,2, value for which F2 is maximum, and
S'ðz0; tÞ ¼ Smax;1 > Sþðz0; tÞwhere Smax;1 is defined by the flux equal-
ity F1ðSmax;1Þ ¼ F2ðSmax;2Þ (see Fig. 5a). The other solution Smin;1 is
disregarded since it does not satisfy the entropy condition (see
Kaasschieter [16] for more details).

Therefore, at tP t*, we have to solve a Riemann problem in re-
gion 1 and another one in region 2. In medium 1, we consider the
convex hull over ½S1ðzðtÞ; tÞ; Smax;1) and, according to item (I),
S1(z(t), t) is connected to Smax;1 by a shock (s12) which travels down-

ward with a velocity vðtÞ / vðzðtÞÞ ¼ F1ðSmax;1Þ'F1ðS1ðzðtÞ;tÞÞ
Smax;1'S1ðzðtÞ;tÞ

< 0, where

z(t) is the shock front location given by the implicit relationship
zðtÞ ¼ z0 þ

R t
t. vðzðt

0ÞÞdt0. In medium 2, we have at the interface at
t = t*, Su = Smax,2 and Sd = 0, then, according to item (II), we consider
the concave hull over [0,Smax,2]. The solution is made of a rarefac-
tion wave (r2) from S = Smax,2 to S = Sw2, and a shock (s2) from S = Sw2

to S = 0. This shock is located at zðtÞ ¼ z0 þ F2ðSw2Þ
Sw2

ðt ' t.Þ. Fig. 5b
shows numerical and semi-analytical solutions at two different
times t1 < t* and t2 > t*.

We remark that in this case, when the CO2 plume reaches the
interface between medium 1 and medium 2 at t = t*, the CO2 starts
to accumulate in medium 1 beneath the interface. At this time, the
saturation at the interface in medium 1 becomes constant and
equal to Smax;1. At the same time, the CO2 plume penetrates into
medium 2 and the saturation jumps from Smax;1 to Smax,2. Then,
the zone in medium 1 where S ¼ Smax;1 increases with time until
saturation becomes equal to Smax;1 in all medium 1.

3.2.2. Case (1b): Buoyancy driven and k1 < k2
For t < t*, the solution is the same as in case (1a). For tP t*, flux

continuity implies again a saturation discontinuity at the interface.
With the definitions and notations of case (1a) the solution is given
by the following equalities: for z < z0, S(z, t) = S1(z, t), S'(z0, t) =
S1(z0, t) and S+(z0, t) is given by F1(S'(z0, t)) = F2(S+(z0, t)). Then, we
have S'(z0, t) > S+(z0, t) (Fig. 6a).

For tP t*, we have a Riemann problem in medium 2 at the
interface with Su = S+(z0, t) and Sd = 0. According to item (II), we
consider the concave hull over [0,S+(z0, t)]. Since S+(z0, t) < Sw2, this
concave hull is a straight line (Fig. 6a) and a shock (s2) is created
between S = S+(z0, t) and S = 0. This shock travels upward with a
velocity vðtÞ ¼ F2ðSþðz0 ;tÞÞ

Sþðz0 ;tÞ
> 0. This means that at any time t > t* the

saturation in medium 2 looks like a convected step function: the
saturation is independent of z and equal to S+(z0, t), the saturation
front travels at a velocity v(t) and its position is equal to
zðtÞ ¼ z0 þ

R t
t. vðt

0Þdt0. Fig. 6 shows numerical and semi-analytical
solutions for two different times t1 < t* and t2 > t*.

3.2.3. Case (2a): Injection driven and k1 > k2
For the saturation discontinuity at the origin, we consider the

concave hull bF1 of F1 over [0,1]. Since F 0
1ðSÞ P 0 for S 2 [0,1], the

solution is made of a rarefaction wave (r1) from S = 1 to S = Sw1

and a shock (s11) from S = Sw1 to S = 0 (Fig. 7a).
At t = t*, a saturation discontinuity takes place at the interface

between S'(z0, t*) = S1(z0, t*) = Sw1 and S+(z0, t*) = S*, where S* satis-
fies F1(Sw1) = F2(S*) (Fig. 7a). In region 2, always at t = t*, we con-

a

b

Fig. 5. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. Case (1a) buoyancy driven ð"h + 1Þ and medium one (left) is more
permeable than medium two (right) (r > 1). (a) Flux curves, concave and convex
hulls; (b) numerical and semi-analytical solutions.

a

b

Fig. 6. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. Case (1b) buoyancy driven ð"h + 1Þ and medium two (right) is
more permeable than medium one (left) (r < 1). (a) Flux curves, concave and convex
hulls; (b) numerical and semi-analytical solutions.
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sider the concave hull between Su = S* and Sd = 0, then a rarefaction
wave (r22) is created between S = S* and S = Sw2 and a shock (s2)
from S = Sw2 to S = 0. A saturation which belongs to (r22) travels
at a velocity equal to F 0

2ðSÞ and its trajectory is given by the method
of characteristics: zS ¼ z0 þ F 0

2ðSÞðt ' t.Þ.
For tP t*, we have F1(S1(z0, t)) = F2(S+(z0, t)) where S+(z0, t) > S*.

Then, a rarefaction wave (r21) is created between S+(z0, t) and S*,
see Fig. 7a. A saturation S2 which belongs to (r21) is described by
the trajectory: zS2 ¼ z0 þ F 0

2ðS2Þðt ' tS2 Þ where tS2 ¼ z0
F 01ðS1Þ

and the
saturation S1 in region 1 is such that F1(S1) = F2(S2). A comparison
between numerical and semi-analytical solutions presented in
Fig. 7b shows a good agreement.

3.2.4. Case (2b): Injection driven and k1 < k2
For t < t*, the solution is the same as in case (2a). At t = t*, a sat-

uration discontinuity takes place at the interface. Let us call S* the
saturation which satisfies F1(S*) = F2(Sw2). Then, when tP t* and as
long as S1(z0, t) < S*, the solution in region 2 is a shock from
S = S+(z0, t) to S = 0 since the concave hull over [0,S+(z0, t)] is a
straight line (Fig. 8a). As in case (1b), this shock travels upward
with a velocity vðtÞ ¼ F2ðSþðz0 ;tÞÞ

Sþðz0 ;tÞ
> 0. When S1(z0, t) becomes greater

than S*, S+(z0, t) becomes greater than Sw2 and the solution is made
of a rarefaction wave (r2) between S = S+(z0, t) and S = Sw2 and a
shock (s2) from S = Sw2 to S = 0. Fig. 8b shows the semi-analytical
and numerical solutions which correspond to t1 < t* and t2 > t*

where S1(z0, t2) > S*.

3.3. Layered heterogeneous porous medium

Subsurface and deep sedimentary aquifers, like Utsira aquifer at
Sleipner site, are usually heterogeneous, and they may be schemat-
ically described as a permeable matrix with low-permeability lay-
ers. Therefore, we consider here an injection into a vertical column
filled with a layered porous medium. Two cases are considered
separately: a periodic layered medium and a heterogeneous
(non-periodic) layered medium.

3.3.1. Periodic layered medium
In this section, we consider a periodic layered column where

the low-permeability layers are identical, characterized by an
absolute permeability k2 and a thickness d, and periodically distrib-
uted in the permeable matrix whose absolute permeability k1 is
greater than k2. The distance l between two consecutive layers is
greater than d. CO2 injection takes place at the bottom of the col-
umn at z = 0.

Let zi1 and zi2 be the elevations of the bottom and top of layer i,
respectively (zi1 < zi2), then zi2 ' zi1 = d and zi+1,1 ' zi2 = l (Fig. 9a).
Let ti1 and ti2 be the arrival times of the CO2 front at zi1 and zi2,
respectively. We analyze now the saturation evolution over all
the intervals [zi1,zi2] and [zi2,zi+1,1].

For t < t12, the saturation evolution over [0,z11] is described in
case (1a): a shock (s12) is created at z11 propagates downward
and meets the rarefaction wave (r1) (Fig. 5a). On the interval

a

b

Fig. 7. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. Case (2a) injection driven ð"h + 1Þ and medium one (left) is more
permeable than medium two (right) (r > 1). (a) Flux curves, concave and convex
hulls; (b) numerical and semi-analytical solutions.

b

a

Fig. 8. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. Case (2b) injection driven ð"h + 1Þ and medium two (right) is more
permeable than medium one (left) (r < 1). (a) Flux curves, concave and convex hulls;
(b) numerical and semi-analytical solutions.
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[z11,z12], a rarefaction wave (r21) is created from S = Smax,2 to S = Sw2

and a shock from S = Sw2 to S = 0 which travels upward.
For t > t12, the flux continuity at the interface z = z12 implies a

saturation discontinuity between two saturations S'(z12, t) and
S+(z12, t) where F2(S'(z12, t)) = F1(S+(z12, t)). This situation is de-
scribed in case (1b). Since S'(z12, t) cannot exceed Smax,2, the max-
imal saturation value which can be reached at the interface in the
permeable matrix is Sþðz12; tÞ ¼ Smin;1, where Smin;1 satisfies
F1ðSmin;1Þ ¼ F2ðSmax;2Þ and Smin;1 < Smax;2 (Fig. 5a).

For t < t21, and over [z12,z21] a shock appears between
S = S+(z12, t) and S = 0 and travels upward with the velocity
vðtÞ ¼ F1ðSþðz12 ;tÞÞ

Sþðz12 ;tÞ
(see case (1b)). Fig. 10a displays the saturation pro-

file in the column for t < t21 as obtained from simulations described
at the end of the section.

When tP t21, here again, a saturation discontinuity appears at
the interface z = z21. As Sþðz21; tÞ 6 Smin;1 the flux at this interface
F1(S+(z21, t)) remains (when time increases) less than the maximal
flux F2(Smax,2) of the low-permeability layers. Then, according to
the previous discussion on saturation discontinuities at layer inter-
faces, no accumulation appears at z = z21.

For larger t, when CO2 has reached the top of the column, the
following scenario repeated for each value of i describes the satu-
ration distribution, as schematically represented in Fig. 9b:

, Over [zi1,zi2]: a rarefaction wave (r2i) is created between S+(zi1, t)
and S'(zi2, t).

, Over [zi2,zi+1,1]: the saturation is independent of z and equal to
S+(zi2, t), and it increases with time.

To obtain the rarefaction wave (r2i) equations and the saturation
values at the interfaces, let us write the trajectory of a given
saturation.

The shock (s12) and the rarefaction wave (r1) over [0,z11] are dis-
cussed in case (1a). The trajectory of a saturation S belonging to (r1)
is zS ¼ F 0

1ðSÞt and the plume arrival time at z = z11 is t11 ¼ z11
F 01ðSw1Þ

.
The rarefaction wave (r21) has been also previously discussed.

The trajectory of a saturation S 2 [Sw2,Smax,2] described by (r21) is
given by zS ¼ z11 þ F 0

2ðSÞðt ' t11Þ, where S+(z11, t) = Smax,2. Let us call
tS,i2 and tS,i1 the arrival and departure times of the saturation S at
z = zi2 and z = zi1. Then tS,12 is given by the equality d ¼ F 0

2ðSÞ
ðtS;12 ' t11Þ.

As discussed in case (1b), the saturation in each permeable
matrix layer is constant with z and evolves with time. Therefore,
at larger t, we have the equality S+(zi2, t) = S'(zi+1,1, t) and, as a con-
sequence of flux continuity, S'(zi2, t) = S+(zi+1,1, t) (see Fig. 9b). Con-
sequently, the arrival time in layer i of the saturation S is equal to
the departure time of this saturation in layer i + 1: tS,i2 = tS,i+1,1.
This leads to the following expression for the trajectory in layer
i: zS ¼ zi1 þ F 0

2ðSÞðt ' ti1Þ ¼ zi1 ' ði ' 1Þd þ F 0
2ðSÞðt ' t11Þ. Finally,

the saturations at the interfaces of layer i, for a given time t,
are given by the sequence of equalities F 0

2ðS
'ðzi2; tÞÞ ¼ id

t't11
and

S+(zi+1,1, t) = S'(zi2, t) where i = 1, . . .,n, t11 ¼ z11
F 01ðSw1Þ

and S+(z11, t) =
Smax,2.

In Fig. 10a and b, we present a comparison between numerical
and semi-analytical solutions at two times, 40 and 200 days, respec-
tively, for a periodic layered columnmadeupof four low-permeabil-
ity thin layers. The physical characteristics are given in Table 1. As
we observe, a single shock propagates downward. This shock is cre-
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Fig. 9. Schematic representations of the periodic layered column (a) and the saturation distribution (b).
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atedbeneath thefirst thin layer.When time increases, this shockdis-
appears at the bottom and the part of the domain located between
z = 0 and z = z11 becomes saturated with S ¼ Smax;1, as shown in
Fig. 10b. As the saturation between two thin layers cannot exceed
Smin;1, there is no CO2 accumulation beneath these thin layers.

From this study, we can draw the following conclusion for the
case of injection into a vertical (1D) periodic column:

, The CO2 is ‘‘filtered” by the first low-permeability layer and it is
trapped with constant high-saturation Smax;1 between the injec-
tion well and the first low-permeability layer.

, There is no CO2 accumulation beneath the upper low-permeabil-
ity layers and the saturation S+(zi2, t) is low (maximal value
Smin;1Þ, constant in space and increasing in time.

, The saturation S+(zi2, t) decreases in each high-permeability
layer (i.e. S+(zi2, t) > S+(zi+1,2, t)).

, The saturation value in each low-permeability layer varies
between Sw2 and Smax,2.

3.3.2. Non-periodic layered porous medium
As previously demonstrated, in the case of a periodic layered

medium, the first low-permeability layer ‘‘filters” CO2: saturations
accumulate at a value S ¼ Smax;1 beneath the layer and there is no
accumulation beneath the other layers. This scenario does not hap-
pen anymore in the case of a random heterogeneous porous med-
ium. As an example, we consider the case of Fig. 11b, where the
column contains two low-permeability layers of different perme-

abilities k2 and k3 such that k3 < k2 < k1, where k1 is the permeable
matrix permeability. Physical parameters are given in Table 1. The
flux functions for the three media are shown in Fig. 11a. We use the
same definitions and notations as in previous sections.

For t < t21, where t21 is the arrival time at the bottom of the sec-
ond layer (permeability k3), the saturation evolution is the same as
in the case of a periodic layered medium, see Fig. 10a. CO2 accumu-
lates under the first layer (permeability k2) with a saturation
Smax;12. In this layer S 2 [Sw2,Smax,2] and in the permeable matrix,
i.e. over [z12,z21], saturation is constant with z and increases with
time from S* to Smin;1, where F1(S*) = F2(Sw2) and F1ðSmin;1Þ ¼
F2ðSmax;2Þ.

At t = t21, the CO2 front reaches the bottom of the second layer
(z = z21), with a saturation S = S+(z12, t21). Since this saturation is
such that F1(S)P F3(Smax,3), the flux continuity cannot be respected
as shown in Fig. 11a. Following case (1a): the saturation in the per-
meable matrix at z = z21 becomes equal to S'ðz21; t21Þ ¼ Smax;13

where F1ðSmax;13Þ ¼ F3ðSmax;3Þ. Therefore, a shock propagates down-

ward with a velocity vðtÞ ¼ F1ðSþðz12 ;tÞÞ'F1ðSmax;13Þ
Sþðz12 ;tÞ'Smax;13

< 0 indicating that

CO2 accumulates also under the second layer. For z > z21, the solu-
tion is the same as for z > z11 (a rarefaction wave from Smax,3 to Sw3

over [z21,z22]). Fig. 11b shows a comparison between semi-analyt-
ical and numerical solutions after 100 days of injection.

These results can be generalized to the case of an injection into
a heterogeneous vertical (1D) layered column. The layer which has
the lowest permeability ‘‘filters” the CO2 saturation: CO2 accumu-

a

b

Fig. 10. CO2 migration in a vertical column filled with a periodic layered porous
medium. Numerical and semi-analytical solutions at (a) short time (40 days); (b)
long time (200 days).

a

b

Fig. 11. CO2 migration in a vertical column filled with a non-periodic layered
porous medium. (a) Construction of the convex and concave hulls; (b) numerical
and semi-analytical solutions.
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lation occurs beneath this layer and may be occurs beneath lower
layers but cannot occur beneath upper layers.

4. Injection and migration in a 2D stratified heterogeneous
aquifer

As discussed in Section 1, one of the objectives of this work is to
qualitatively explain the CO2 plume accumulation under eachmud-
stone layer as observed in Utsira aquifer at Sleipner Vest field. For
this purpose we model Utsira as a 2D permeable aquifer containing
regularly spaced identical low-permeability layers. These assump-
tions are common in the litterature dealing with Sleipner modeling
[29]. According to the discussions made in previous sections, an
accumulation under a low-permeability layer is characterized by
a saturation discontinuity at the interface with S'(z0, t) at the
upstream side (in the high-permeability layer) and S+(z0, t) at the
downstream side (in the low-permeability layer) such that
S'(z0, t) > S+(z0, t), where z0 is the interface coordinate. This type of
saturation discontinuity comes from the fact that the upstream-flux
value is greater than the maximal downstream-flux value. Then,
flux continuity at the interface can only be satisfied if the up-
stream-flux value is reduced to a value equal to the maximal down-
stream-flux value. In a vertical column two cases have been
distinguished: (i) if the low-permeability layers are identical, accu-

mulation occurs only beneath the first one, numbering starting at
the bottom; (ii) if the low-permeability layers have different per-
meabilities, accumulation occurs beneath some particular layers,
themost elevated layer of this sequence have the lowest permeabil-
ity. The key parameter which explains the difference between this
1D accumulationmechanism and the observed 2D one, i.e. accumu-
lation beneath each low-permeability layer, is the total velocity. In-
deed, it is constant in 1D but decreases with elevation in 2D.

To prove this assertion, we consider a 2D vertical cut of Utsira
and simulate the CO2 injection in order to obtain the velocity field,
then we analyze theoretically the evolution of the flux function
with elevation in the vertical cut. Utsira is modeled as a 2D
domain, 20 km long and 196 m thick, made of 16 m thick high-per-
meability sandstone layers separated by nine thin low-permeabil-
ity mudstone layers (4 m thick), see Fig. 12a. The injection point is
located on the left corner at the bottom of the domain. Fluid and
aquifer properties are taken from the GeoSeq benchmark [27]
(see Table 2). Simulation of CO2 injection is performed with the
code Cast3M.

Fig. 12b shows a zoom on the CO2 saturation distribution at the
bottom of the 2D domain, where only the first mudstone layers are
represented. Fig. 13 gives the saturation profile along the vertical
axis passing through the injection point, after 3 months of injec-
tion. As expected, accumulation of CO2 is observed under each
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Fig. 12. (a) Schematic representation of a vertical cut of Utsira aquifer at Sleipner; (b) CO2 saturation distribution after 3 months of injection.
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mudstone layer and the thickness of accumulated CO2 lenses
diminishes with elevation. Moreover, we see that the saturation
distribution is described by a rarefaction wave in mudstone layers,
with a mean saturation S = 0.6, and by a shock in the sandstone lay-
ers, with a lower mean saturation S = 0.2. This saturation distribu-
tion is comparable to the one obtained for the periodic layered
column (see Fig. 10b). Fig. 14 displays the vertical component of
the velocity along the vertical axis. We see that this component de-
creases drastically at the first low-permeability layer. A zoom of
this component in the region above this first layer shows that it de-
creases steeply just beneath each mudstone layer and is constant
in the layer (see Fig. 14).

The flux function depends explicitly on saturation S and vertical
coordinate z via the velocity v(x,z) and the absolute permeability k:
F(S,x,z) = f(S)[v(x,z) + k(z)(qw ' qg)gkw(S)rz], where k = ka, with

a = 1 for sandstone layers, a = 2 for mudstone layers (k2 < k1) and
where x and z denote horizontal and vertical coordinates, respec-
tively. Let i be the index which numbers the mudstone layers from
the bottom of the aquifer. For iP 1, we note vi the value of the ver-
tical velocity component in the ith mudstone layer, value assumed
to be constant and taken along axis z, and we note zi1 and zi2 the
elevations of the ith layer inflow and outflow surfaces, respectively.
To explain the accumulation under the i + 1th mudstone layer, we
plot schematically in Fig. 15 the vertical component of the flux
function at both sides of the outflow surface z = zi2 and inflow sur-
face z = zi+1,1 of the second and third mudstone layer: Fi;aðSÞ ¼
1
/a
f ðSÞ½v i þ kaðqw ' qgÞgkwðSÞ) and Fiþ1;aðSÞ ¼ 1

/a
f ðSÞ½v iþ1 þ kaðqw'

qgÞgkwðSÞ) where a = 1,2 and i = 2. The flux function is ‘‘S-shaped”
in mudstone layers and ‘‘bell-shaped” in sandstone layers. More-
over, Fi+1,a(S) > Fi,a(S) whatever a. This remains true in the upper
part of the aquifer and this is why we keep the index i in the flux
indexation.

Let Smin;i be the saturation which satisfies Fi;1ðSmin;iÞ ¼
Fi;2ð1' SrwÞ (i.e. Smin;i is the saturation in the sandstone layer which
corresponds to the maximal flux value in the i + 1th mudstone
layer, see Fig. 15). The flux continuity at the outflow surface of
the ith mudstone layer with the sandstone layer, at z = zi2, implies
that the maximal saturation value which can be reached in the

Table 2
Fluid properties and parameters of aquifer simulation.

Porous media properties:
/ Sands: 0.35

Shales: 0.35
k (m2) Sands: 3 - 10'12

Shales: 10'14

Fluid properties:
qw (kg m'3) 997.42
qg (kg m'3) 716.7
lw (kg m'1 s'1) 6.922 - 10'4

lg (kg m'1 s'1) 5.916 - 10'5

Srw 0.2
Srg 0.05
krw Brooks–Corey
krg Brooks–Corey

Initial conditions:
S0 0

Well boundary condition:
SN 0.8
qN (kg s'1) 0.1585

x = Lx Boundary condition:
PD Hydrostatic

System geometry:
Domain horizontal width Lx (m) 20,000
Domain vertical width Lz (m) 196

Spatial discretization:
Cell number in x 88
Cell number in z 784
Grid resolution Dx (m) 0.5 < Dx < 500
Grid resolution Dz (m) 0.25

Fig. 13. Saturation profile along the vertical axis passing through the injection well.

Fig. 14. Evolution of the velocity vertical component along the vertical axis and a
zoom on this component in the region above the first mudstone layer.

Fig. 15. Vertical components of the flux functions at both sides of the outflow
surface z = zi2 and inflow surface z = zi+1,1 of the second and third mudstone layers
(i = 2). ‘‘Bell-shaped” functions correspond to sandstone sides and ‘‘S-shaped”
functions correspond to mudstone sides.
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sandstone layer is Smin;i. If Smin;iþ1 < Smin;i, then the CO2 plume
reaches the i + 1th mudstone layer with a flux value greater than
the maximal flux value in the i + 1th mudstone layer. Conse-
quently, CO2 accumulation takes place beneath this layer.

The inequality Smin;iþ1 < Smin;i is always satisfied whatever the
value of i. As a matter of fact, by definition, Smin;i < Smax;i < 1' Srw
and Fi;1ðSmin;iÞ ' Fiþ1;1ðSmin;iþ1Þ ¼ 1

/1
f ð1' SrwÞðv i ' v iþ1Þ > 0 then,

Smin;iþ1 < Smin;i. Therefore, we can write the following sequence of
inequalities (see Fig. 16):

Smin;1 > Smin;2 > # # # > Smin;n; ð20Þ

where n is the number of mudstone layers (n = 9 in our case).
Inequalities (20) show that CO2 accumulates beneath each mud-
stone layer. These saturation values represent the mean level, i.e.
time average, of saturation value in each sandstone layer: Smin;i is
the mean saturation value in the sandstone layer above the ith
mudstone layer. The mean saturation in the accumulation zones be-
neath each mudstone layer is 1 ' Srw. In the 2D simulation of Utsira,
we have 1 ' Srw = 0.8 and Smin;i lies in the range 0.15–0.25, see
Fig. 15. This is in agreement with Fig. 13 which shows the saturation
profile along the vertical axis.

We implicitly assume in this demonstration that the saturation
front which travels in the sandstone layer along the vertical axis
from the ith to the i + 1th mudstone layers do not decrease with
time from Smin;i to a value smaller than Smin;iþ1. As the problem is
not 1D but 2D, we cannot demonstrate this assumption. Neverthe-
less, Fig. 15 shows that the saturations Smin;i and Smin;iþ1 are low and
in a range where the flux function does not vary so much, showing
that migration in sandstone along the vertical axis is quasi-unidi-
mensional. Moreover, as Smin;i is always smaller than the Welge sat-
uration value of the flux function Fi,1, the saturation in the
sandstone layer is probably described by a shock, and therefore
cannot decrease as in 1D (see case (1b) of Section 3.2).

5. Conclusion

The migration of CO2 injected into a heterogeneous layered por-
ous media saturated with water has been studied with a Buckley–
Leverett equation with gravity. As CO2 is less dense than water, it
rises under the combined action of the injection rate and buoyancy.
In a first step, we investigated the CO2 migration in a vertical
homogeneous column, and then in a heterogeneous layered col-
umn. The associated Riemann problems have been solved in each

case and, depending on the heterogeneity vertical distribution,
the saturation evolution in space and time displays a large variety
of migration behaviours made of shocks and rarefaction waves
with saturation discontinuities at layer interfaces. We showed that
when a wave (rarefaction or shock) reaches the interface with a
flux value greater than the maximal flux value of the low-perme-
ability layer, all the CO2 carried by this wave cannot be transmitted
to the low-permeability layer. Continuity of flux at the interface
can only be satisfied if the flux at the interface is reduced to a value
equal to the maximal flux value of the low-permeability layer. This
reduction results in a reflected shock and consequently CO2 accu-
mulates with high-saturation value beneath the low-permeability
layer. An important result is: in a one-dimensional vertical layered
porous medium, the least permeable layer ‘‘filters” the CO2 satura-
tion, i.e. CO2 accumulates beneath this layer and not the upper lay-
ers. For each case, semi-analytical solutions have been proposed
and showed a good agreement with simulation results.

The study has been extended to the two-dimensional case, with
a 2D vertical cut of a periodic layered aquifer representing sche-
matically a vertical cut of Utsira aquifer at Sleipner site in Norway.
We proposed an explanation to the observed CO2 stratification be-
neath each low-permeability mudstone layer, based on the con-
comitant decrease of the velocity and flux function with elevation.

A next step of this work will be to take into account capillary ef-
fects. These effects should facilitate vertical migration through the
low-permeability layers and compete with the stratification pro-
cess. After injection one expects that these capillary effects domi-
nate in the vertical migration.
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