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SUMMARY 

The variable state method is a numerical technique for analyzing, predicting and 

modeling dynamic systems. It is widely used in electrical engineering applications, 

especially for the resolution of electrical circuits. This is mainly because it offers 

advantages such as simplicity and suitability for programming when compared with 

other traditional methods like differential equations resolution and operational 

transforms.  

In the present document, a brief overview of the method is exposed, explaining its 

basics, the procedure to follow when solving a problem using it, and a short example 

as a case of application. 
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1. INTRODUCTION – APPLICATION SCOPE OF THE STATE VARIABLE 

METHOD 

In order to analyze the dynamic behavior of a physical system, traditionally two well 

known methods have been employed: solving of differential equations, and solving of 

operational transforms.  

The differential equations approach entrains the physical laws of the system, it is 

solved in the time-space domain and can be easily extended to non linear or time 

varying systems. However, the solving methods sometimes comprise very heavy 

calculus, and a specific number of initial conditions are required depending on the 

order of the differential equation. 

The operational transforms, such like the Laplace transform avoid working with 

complicated high order derivatives using functions in the complex domain, and do not 

require initial conditions. However, they are sometimes difficult to implement for 

computational purposes and the inversion procedure can be challenging for particular 

cases.  

The state variable method constitutes an alternative to analyze the dynamic behavior of 

a system that combines the advantages of both methods presented before. It is based 

in the resolution of first order differential equations, therefore it maintains the basic 

physics of the problem. Initial values are required at a certain point of time and location, 

but higher order initial conditions are not needed and it is convenient for computer 

implementation.   

2. METHOD FUNDAMENTALS 

Consider a continuous in time dynamic system which has several inputs defined by the 

vector u with a dimension of “k”, and several outputs, defined by the vector Y of 

dimension “N” (fig.1.). The state of the system is described by a set of “n” dynamically 

independent variables called state variables that constitute the vector X.     

 

Fig.1. Block diagram of a physical system 

The input represents the variables monitored, controlled, known. The state variables 

represent a set of equations that dictate an output once an input is given, conserving 
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the physical laws applicable to the specific case. The output represents the variables 

which its prediction is desired. 

The state information is necessary to solve the problem because it summarizes the 

essential information about the past of the system to predict the future of the system. 

Therefore in order to determine the dynamic behavior of the system, first it is important 

to solve the state of the system, which is represented by the following system of 

equations: 
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………………………………………………………..……………………………………(Eq. 1) 

This system of equations is constituted by linear first order coupled derivative 

equations that can be solved for all the times “t” if the initial values for the state 

variables are known.  

Once the state of the system is solved for the desired time frame, the output of the 

system can be calculated from the following algebraic equation system: 
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………………………………………………………..……………………………………(Eq. 2) 

The two equations can be written in a more compact manner 

 [ ] [ ] uBXAX kxnnxn ⋅+⋅=&  (Eq. 3) 

 [ ] [ ] uDXCY kxNnxN ⋅+⋅=  (Eq. 4) 

It is important to note that the matrixes A, B, C, D are constant in time. 

The basic solving procedure in the state variable method is to calculate the state 

variables behavior as a function of time and then to use that information to calculate 

the output variables trough a purely algebraic process. 

Some of the advantages of this method are the following: 
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-Abundant literature in mathematics for solutions of coupled first order differential 

equations. 

-Easy programming on computers 

-Leads to generalizations for nonlinear/time varying systems 

-Provides insights of the system behavior 

Choosing the state variables 

The state of a physical system is defined as the information about a system at a point 

of time that needs to be known for finding the output originated by an excitation at that 

exact point of time. In general their number must be chosen following the next 

guidelines: 

-Number of independent initial conditions that can be arbitrarily prescribed 

-Degree of the characteristic equation 

-Number of natural frequencies in the system 

3. APPLICATION EXAMPLE: ELECTRICAL CIRCUIT 

In the following section the application of the state variable method is illustrated solving 

an electrical circuit example. Consider the RLC circuit presented in fig. 2. Initially (t = 0 

s) it is under the influence of a source of magnitude “e” and the inductor current (iL) and 

the capacitor voltage (VC) are known. It is necessary to find out the voltage difference 

across the resistance R1 (VR1), and the current passing through resistance R2 (iR2) for 

a time t= 2 s.  

R1

e

L

C R2

Branch 1 Branch 2

 

Fig.2. Electrical Network 

For the applications of the state variable method, VR1 and iR2 will be defined as the 

desired output of the system, and “e” as the excitation (input) on the system. The state 

variables methods as was mentioned in the previous sections must contain information 

of the system at a certain point of time. For the particular case there are only two initial 

conditions, so the variables iL and  VC are chosen as state variables. 

The next step is to find the relationship between the input variables, the state variables 

and the output variables in the following form (eq. 5 and 6): 
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uBXAX ⋅+⋅=&  

(Eq. 5) 

 uDXCY ⋅+⋅=  (Eq. 6) 

When substituting for the particular case: 
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In order to obtain these equations, it is necessary to write the Kirchhoff voltage law on 

the branch 1 and 2, trying to express everything in terms of the input, output and state 

variables: 

Kirchhoff voltage law for branch 1: 
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Kirchhoff voltage law for branch 2: 
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Algebraic equations for deriving VR1 and iR2: 
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The state variables equations are the following: 
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(Eq.13) 

The final procedure to obtain the solution for any time is to solve equation 12 to obtain 

VC and iL for the given time (t = 2 s) and then substitute in eq. 13 to find the two 

required outputs. 
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4. APPLICATION EXAMPLE: HYDRAULIC SYSTEM 

In the following section the application of the state variable method is illustrated solving 

the hydraulic system shown in Fig 3. It consists of three tanks, with two fluid inlets (q1, 

q2 ) and one fluid outlet (q3 ) that change with time. For simplicity of the modeling, the 

flow through restrictions is assumed to follow the following linear relationship: 

  

R

th
tq

)(
)(

∆
=  (Eq. 14) 

 
Fig.3. Multi-tank flow system 

It is required to monitor at all times the height of the three tanks (h1, h2, h3 ). In 

consequence, for the applications of the state variable method, they will be defined as 

the “desired” output of the system, and “q1 ,q2” as the excitation (input) on the system. 

In order to obtain the state variables and the matrixes of the system A, B, C and D a 

different approach from the previous case will be followed: the continuity equations for 

each one of the tanks are written: 
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Where a1, a2, a3 are the transversal areas of the respective tanks.     
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From these equations it is a straightforward procedure to obtain the state variable 

method equations, namely:  

 
uBXAX ⋅+⋅=&  

(Eq. 18) 

 uDXCY ⋅+⋅=  (Eq. 19) 

Rearranging eq. 15, 16, 17: 
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The state variables equations are the following: 
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In this particular case it is possible to see that the state variables are the same as the 

output variables, so the algebraic equations system is the following: 
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5. APPLICATION EXAMPLE: MUD SYSTEM FOR DRILLING OIL WELLS 

For controlling the inflow of formation fluids into the well bore while drilling an oil well, 

usually a hydraulic system like the one presented in fig 4 is used. It consists of two 

tanks, with one fluid inlet (q1) and two fluid outlets (q2 ,q3 ) that change with time. Tank 

1 represents the mud column inside the drill string and Tank 2 represents the mud 

column inside the well bore (annular space). q1 represents the mud flow being injected 

to the system, q2 represents the mud losses into the formation, and q3 represents the 

mud flow being drained from the well bore. 
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Fig.4. Mud height control flow system 

For simplicity of the modeling, the flow through restrictions is assumed to follow the 

following linear relationship: 
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It is important to state that this equation neglects the kinematic and viscous losses 

effect in each mud column. 

And the mud losses into the formation are assumed to follow a linear relationship: 
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As for the previous problem, it is required to monitor at all times the height of the two 

tanks (h1, h2). In consequence, for the applications of the state variable method, they 

will be defined as the “desired” output of the system, and “q1 ,q3” as the excitation 

(input) on the system. In order to obtain the state variables and the matrixes of the 

system A, B, C and D the same approach from the previous case will be followed: the 

continuity equations for each one of the tanks are written: 
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Where a1, a2 are the transversal areas of the respective tanks. 
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From these equations it is a straightforward procedure to obtain the state variable 

method equations, namely:  

 
uBXAX ⋅+⋅=&  

(Eq. 29) 

 uDXCY ⋅+⋅=  (Eq. 30) 

Rearranging eq. 15, 16, 17: 
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The state variables equations are the following: 
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In this particular case, again it is possible to see that the state variables are the same 

as the output variables, so the algebraic equations system is the following: 
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5.1. Resolution for a particular case: 

To illustrate the resolution of the system, the following data will be used: 

Physical properties: 

2

3

/81.9

/2500

smg

mkgmud

=

=ρ
 

Geometrical and well data: 

Hole size: 6.5 in 

Pipe OD: 4 in 

Pipe ID: 3.34 in 

It is necessary to calculate the areas a1 and a2: 
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Flow data: 

For a first aproximation, the inlet and outlet flows are assumed to be zero: 
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The formation constants will be imposed arbitrarily so that the leakage to the formation 

is minimum: 

C = 1 m 

R2 = 2E15 m/m^3/s 

Initial conditions 

At t = 0 s: 

2000)0(1 =h m 

1900)0(2 =h m 

The system of equations to solve, once substituted the physical variables, for each time 

is the following: 









−
+









⋅








−
+

















−−−

−−−
=



















151

0

)(

)(

182.750

0909.176

)(

)(

4438.94438.9

3221.23221.2

)(

)(

2

1

2

1

2

1

Etq

tq

th

th

EE

EE

dt

tdh

dt

tdh

The solving procedure is the following: The equation system is solved for each time 

step, and the heights for the next time step are calculated with: 

 
dt

tdh

t

hh OLDNEW )(
=

∆

−
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For the particular case, a time step of 2 s was used. 

The solution is shown in fig 6: 

 

Fig.6. Evolution of the height with time for two tanks 

The solution indicates that the system reaches an equilibrium after 2000 s, when the 

two tanks reach the same height: 1930 m 
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Appendix I: Calculation of the resistance of the formation 

Assuming that the following linear relationship is followed: 

Form

form
R

P
q

∆
=  

And that the pressure difference can be expressed as: 

( ) formationatm PhgPP −⋅⋅+=∆ ρ  

Substituting: 

( )

Form

formationatm

form
R

PhgP
q

−⋅⋅+
=

ρ
 

Rearranging: 

( )

Form

form

Form

atmformation

form

R

Ch
q

g

R

g

PP
h

q

'

−
=

⋅

⋅

−
−

=

ρ

ρ

 


